

Water Meter Useful Life Analysis

Office Management and Budget

gilbertaz.gov

Introduction

Using data analytic tools to:

- Calculate the average time to failure for water meters
- Calculate the probability of failure for a specified time
- Calculate the remaining life assuming reliability for a certain time.
- Determine the intersection between loss of revenue (due to unreliability) and depreciation of asset
- Conclude optimal time for water meter replacement

Methodology & Definitions

Methodology:

- Descriptive Statistical Analysis
- Weibull Statistical Analysis
- Straight Line Depreciation
- Break Even Analysis

Definitions: <u>Accuracy:</u> Ability for a meter to exact readings at different rates of water flow.

<u>Reliability:</u> Probability an item
(e.g. system or sub system) will
perform its function with no
failure for a stated mission time.

Accuracy of meter test determines failure threshold and reliability of the water meter system.

Mean Time To Failure

Life Data Folio: SRII .7	75\Data1									
MTTF				18	.263	3560 yı	r			
Mean Life		уг		No Bounds		Captions On				
QUICK CALC	ULATION PAD	Units	/	Bounds		Options	~			
Calculate			Inpu	ıt						
	Reliability		Fail	Failures/Suspensions						
5 1 1 44	Prob. of Failure			F/S 437/827						
Probability	Cond. Reliability									
	Cond. Prob. of Failure									
	Reli	able Life								
	BX% Life									
Life	Mea									
	Mean Re	emaining Life								
Rate	Failu	ure Rate)			·				
1				Calculat	e	Report				
						Close				

X

1

Reliability Vs. Time _{Years} .75 SRII weil

Weibull Statistical Analysis

 (\land)

х

Reliability vs. Time Kilogallons .75 SRII Wei

Weibull Statistical Analysis

X

ReliaSoft Weibull++ - www.reliasoft.com

Straight Line Depreciation

Meter Value .75 SRII Water Meters

Meter Value vs. Lost Water

verage KG per Year 151.4	4 Meter Reliability	100%	95%	90%	85%	80%	75%	70%	65%	60%	559
Vater Rate \$1.3	8 Revenue	\$193.84	\$191.77	\$190.85	\$189.94	\$189.02	\$188.11	\$187.20	\$186.28	\$185.37	\$184.4
evenue Assuming Full Reliability \$193.8	4 Lost Revenue	\$0.00	\$2.08	\$2.99	\$3.90	\$4.82	\$5.73	\$6.65	\$7.56	\$8.47	\$9.3
Straight Line Depreciation (MTTF 20 yr.)	Age in Years	0.0	12.5	13.9	14.9	15.6	16.2	16.8	17.3	17.7	18.
Annual Depreciation Charge is \$7.01 Where ADE=C-R/N And C	=										
Cost of the asset, R= Salvage value of asset and N= Useful	Remaining Meter Value										
economic life of asset in years (MTTF)		x	\$40.30	\$30.28	\$23.62	\$18.50	\$14.23	\$10.51	\$7.08	\$3.99	\$0.9
Remaining Months to Full Depreciation of Asset	Breakeven Analysis Months	x	19.4	10.1	6.0	3.8	2.5	1.6	0.9	0.5	0.

Results All Meters

Average KG per Year 151.44		Meter Reliability	100%	95%	90%	85%	80%	75%	70%	65%	60%	55%	50%
Water Rate \$1.28		Revenue	\$193.84	\$191.77	\$190.85	\$189.94	\$189.02	\$188.11	\$187.20	\$186.28	\$185.37	\$184.45	\$183.54
Revenue Assuming Full Reliability \$193.84		Lost Revenue	\$0.00	\$2.08	\$2.99	\$3.90	\$4.82	\$5.73	\$6.65	\$7.56	\$8.47	\$9.39	\$10.30
Straight Line Depreciation (MTTF 20 yr.)		Number of KG	0.0	1539.19	1830.78	2032.36	2193.73	2332.23	2456.25	2570.58	2678.36	2781.84	2882.8
Annual Depreciation Charge is .044 Where ADE=C-R/N And C=													
Cost of the asset, R= Salvage value of asset and N= Useful		Remaining Meter Value											
economic life of asset in years (MTTF)			x	\$59.11	\$46.06	\$37.04	\$29.82	\$23.62	\$18.07	\$12.95	\$8.13	\$3.50	-\$1.02
Remaining Months to Full Depreciation of Asset		Breakeven Analysis Months	x	28.5	15.4	9.5	6.2	4.1	2.7	1.7	1.0	0.4	-0.1

Conclusions

Γ	Veter	MTTF (Years)	MTTF (KGAL)	ADE YEARS	ADE KGAL	AVG KGAL/YR	Intercept Years	Intercept KGAL
SPII	0.75	18.26	2860.27	7.01	0.045	151.44	17.30	2678.36
SKII	1	17.08	55169.27	10.77	0.002	7087.02	15.6	3674.51
DNANA	0.75	8.25	2911.92	7.01	0.044	385.10	6.7	2442.73
FIVIIVI	1	6.77	4504.50	10.77	0.028	690.61	5.4	3590.09

The intercept is the point where the depreciation of the asset is equal to the lost revenue.

By measuring asset depreciation and revenue slippage due to system degradation we can obtain an optimal point for asset replacement. The following conclusions can be made.

- Across the whole system, optimal asset replacement can save on fixed costs.
- Changing the meter too early increases meter replacement costs.
- Changing the meter too late increases lost revenue from water sales.

THANK YOU

Share your story on social media using #ComingToGilbert! Connect with all of Gilbert's social media channels at gilbertaz.gov/connect.

@GilbertYourTown

@GilbertYourTown

/GilbertAZ