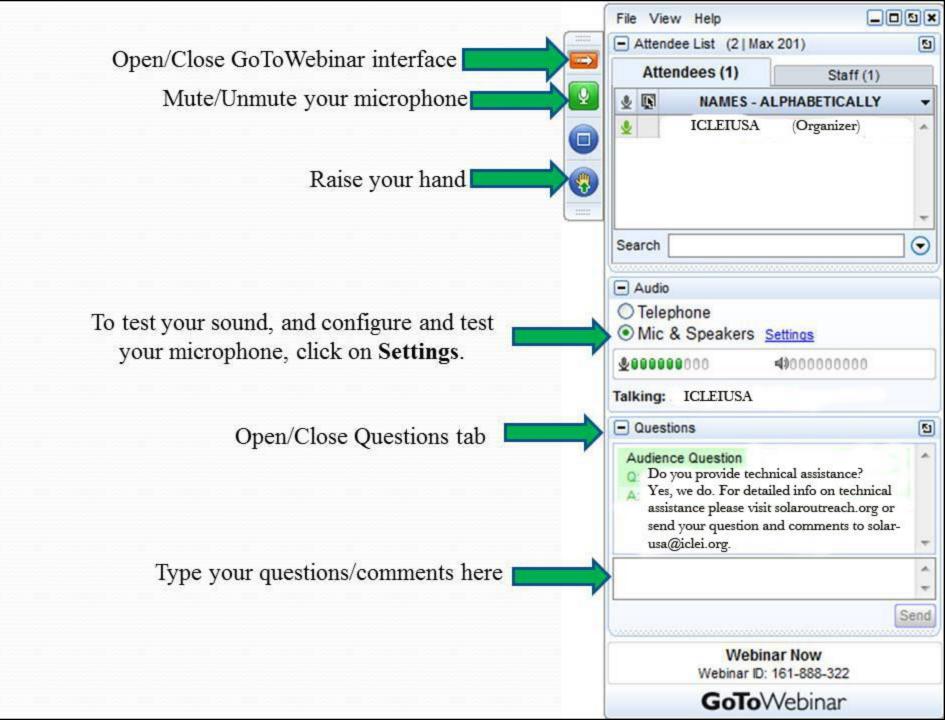
Maximum Solar at the Heart of Urban Forests

September 18th, 2013

About the SunShot Solar Outreach Partnership

The SunShot Solar Outreach Partnership (SolarOPs) is a U.S. Department of Energy (DOE) program designed to increase the use and integration of solar energy in communities across the US.


Links to SolarOPs and ICLEIUSA:

SunShot Solar Outreach Partnership

www.solaroutreach.org Follow @SolarOutreach

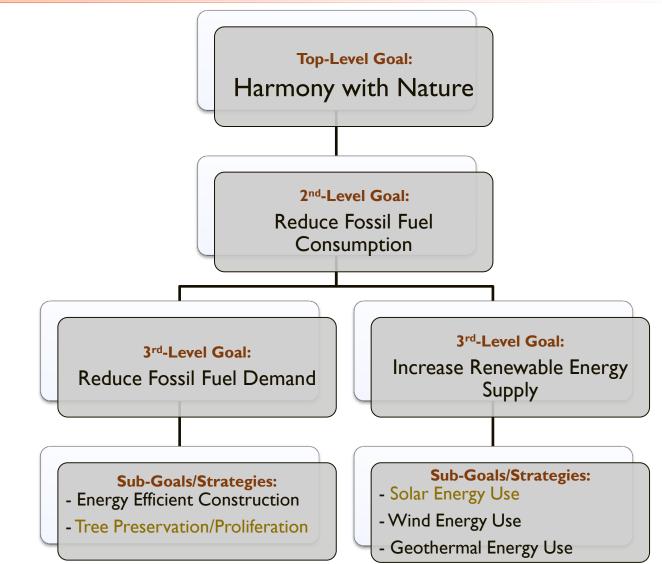
ICLEI – Local Government For Sustainability USA

<u>www.icleiusa.org</u> Follow @ICLEI_USA

Speakers

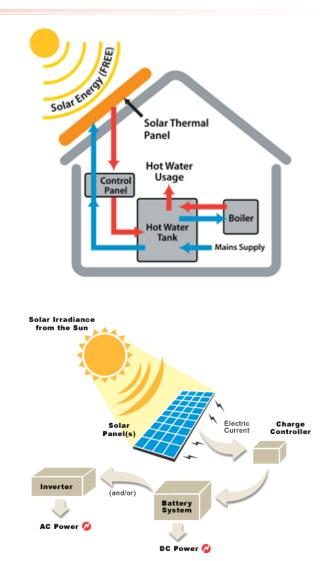
- Chad Tudenggongbu, ICLEI Local Governments For Sustainability
- David Morley, Senior Research Associate, Planning Advisory Service Coordinator/Co-editor of Zoning Practice at American Planning Association
- Daniel C. Staley, DCS Consulting Services
- Sara Davis, Program Manager, Office of the City Forester, Parks & Recreation, City and County of Denver

Balancing Solar Energy Use and Tree Preservation Through Local Planning



Communities Pursue Multiple Goals

Communities Pursue Multiple Goals

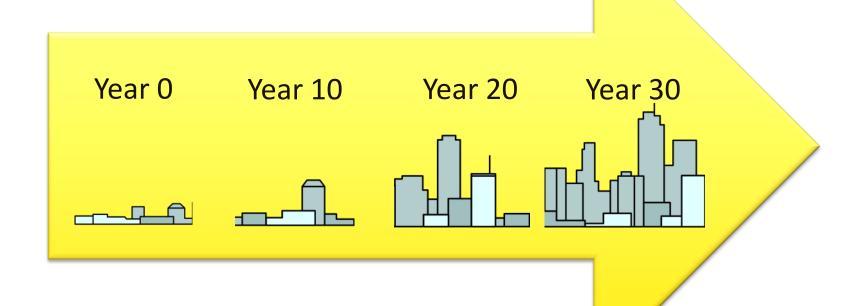


Communities Pursue Multiple Goals

- Solar Irradiance as a Local Resource
 - Can be used to produce heat or electricity
 - Using it may affect the use or conservation of other resources

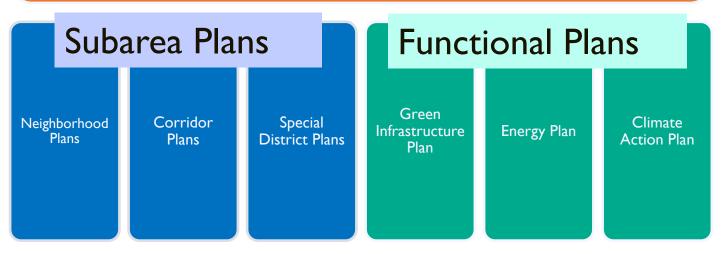
- Trees as Local Resources
 - Can be harvested for wood and by-products
 - Can be preserved or planted for ecosystem services
 - Preserving or planting them may affect the use or conservation of other resources

 There is an inherent (potential) conflict between solar energy use and trees.



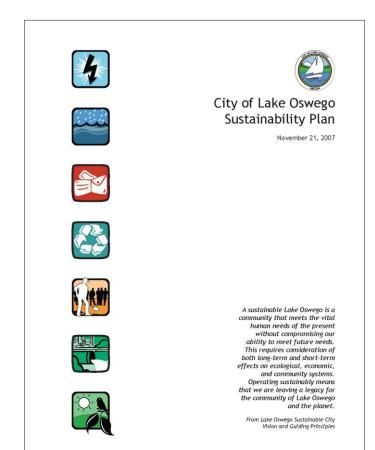
Approach issues comprehensively

Consider long-term implications


Resource studies/analyses

Local Plans

Communitywide Comprehensive Plan


- Example: Pleasanton, CA, General Plan
 - Policy 4: Program 4.2: Continue to implement parking lot tree planting standards that would substantially cool parking areas and help cool the surrounding environment. Encourage landscaping conducive to solar panels in areas where appropriate.

Pleasanton General Plan 2005 - 2025

- Example: Lake Oswego, OR, Sustainability Plan
 - Proposed Action: Revise Solar Access codes to be more user-friendly and efficient; include public conversation about inherent conflicts between tree protection and solar access protection (as part of green building program)

- Development Regulations
 - Subdivision Codes
 - Minimizing conflicts through site design standards
 - Zoning Codes
 - Minimizing conflicts through tree preservation/landscaping and solar access standards
 - Minimizing conflicts through community solar permissions

 Example: Berkeley, CA, Municipal Code, Chapter 12.45, Solar Access and Views

The purpose of this chapter is to:

I. Set forth a procedure for the resolution of disputes between private property owners relating to the resolution of sunlight or views lost due to tree growth...

The objectives of this chapter are:

- I. To preserve and promote the aesthetic and practical benefits which trees provide for individuals and the entire community;
- 2. To discourage ill-considered harm to or destruction of trees;
- 3. To encourage the use of solar energy for heat and light;
- 6. To encourage the maintenance of positive relationships within a neighborhood when there is conflict ...

- Examples: Communities that explicitly permit community solar projects:
 - Cleveland Heights, OH (§ 1165.02(i))
 - Baltimore, MD (§ 14-306)
 - Boulder County, CO (§4-514.G&L)

- Public Engagement/Awareness Strategies
 - Mapping Tools
 - Permitting Assistance
 - Informational Brochures
 - Development Project Consultations

Planning for Solar Energy Briefing Papers

- Solar Community Engagement Strategies for Planners
- Solar Mapping
- Integrating Solar Energy Use into Local Plans
- Integrating Solar Energy Use into Local Development Regulations
- Balancing Solar Energy Use with Potential Competing Interests
- Recycling Land for Solar Energy Development

www.planning.org/research/solar/

PLANNING FOR SOLAR ENERGY BRIEFING PAPERS

David Morley, AICP

Senior Research Associate American Planning Association <u>dmorley@planning.org</u> 9/18/2013

Solar Energy and Urban Forests: Solutions at Scale

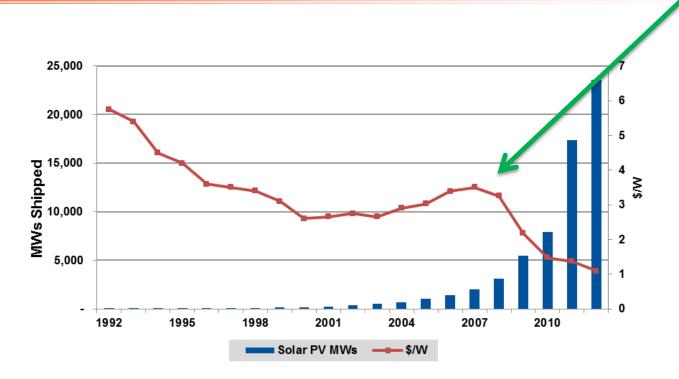
- History
- Current and Future States of Rooftop Solar Energy Collection
- Solutions at Scale

History

Spanish grid next to Jeffersonian grid in Los Angeles

History

- Laws rooted in British Common Law, but no "Right to Light" in USA, Canada
 - Legal precedents
- Hodgepodge of local laws
- Legal protections vary



History

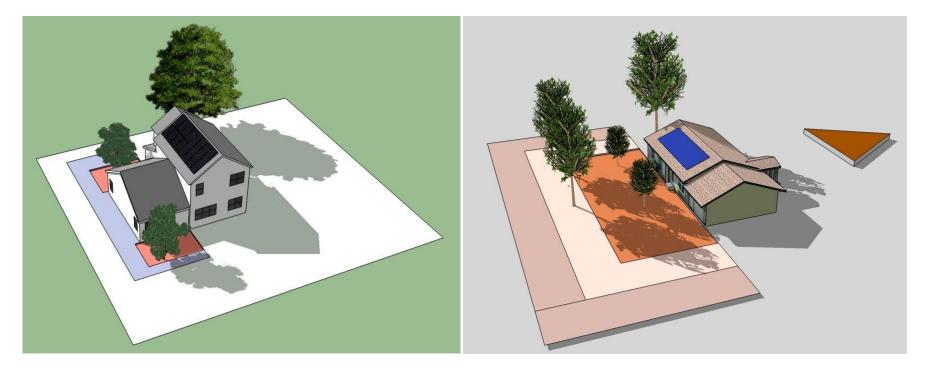
- Trees used in lieu of wall cavity insulation to condition buildings
- 20th century trend away from design solutions for building conditioning
 - From gables, awnings
 - To using energy
 - Built environment durable

Current State of Solar

Costs plummeting, installations soaring

- Only 25% of U.S. roofs suitable for solar collection¹
- Social forces driving installations
 - "Green signaling"
 - Severe weather increasing
 - Energy independence

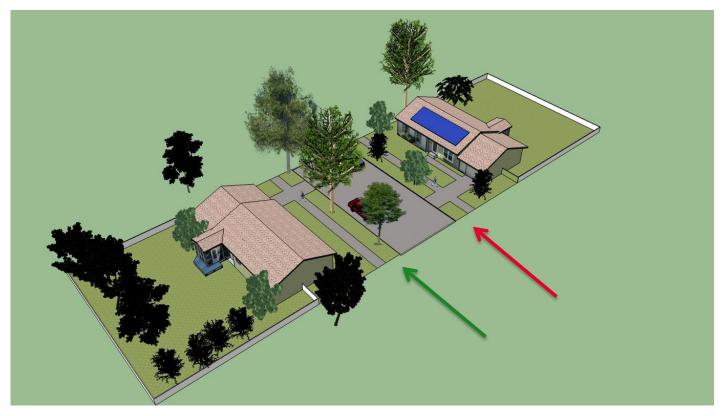
I. Denholm and Margolis, 2008. Supply Curves for Rooftop Solar PV-Generated Electricity for the United States. National Renewable Energy Laboratory, Golden, CO, USA.


Future State of Solar

- Several forecasts of solar grid-parity by next decade
- Solar continues technological trend similar to "Moore's Law" in computing
- More initiatives like California to encourage solar

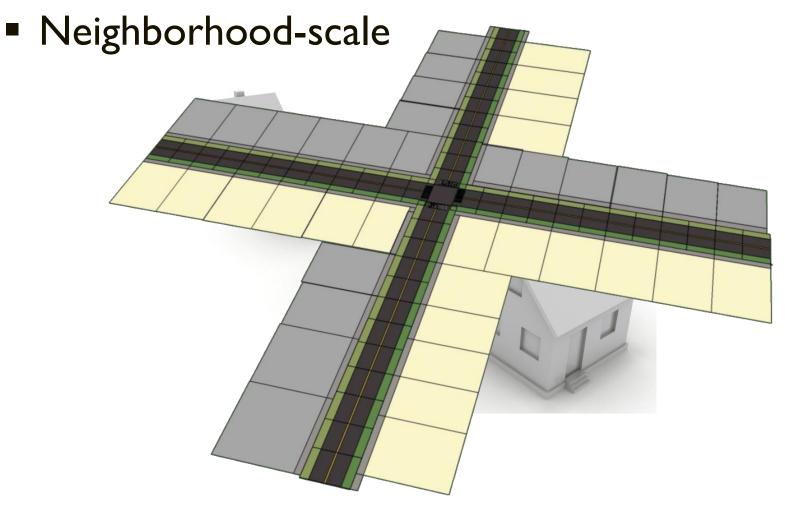
Solutions at Scale

Parcel-scale



Ordinance, covenant, easement, standard, professional design, guideline, educational material...

Solutions at Scale


Street-scale

Ordinance, covenant, easement – post-disaster planning...

Solutions at Scale

Ordinance, covenant

All solutions from: Staley, D.C. 2013. Urban Forests and Solar Power Generation: Partners in urban heat island mitigation. *Int.Journ. Low Carbon Technol.* 8:3

Solutions: Permitting

- Many European countries reduce cost by standardizing permitting
- Initial success in US from permit reform, Best Management Practices
 - http://solarcommunities.org/
 - Solar Energy Industry Assn.
 - American Planning Assn.
- Aforementioned solutions can fold into permit process, ordinances

Conclusions

- No legal basis for right to light in U.S., Canada
- Tree shade is used to condition the majority of older building envelopes
- Solar power on rooftops will be common soon
- Design paradigms must change to accommodate trees and urban forests
- Arborists and solar industry are good partners for solar-friendly development

Dan Staley

http://danstaley.net staley.dan@gmail.com September 18, 2013

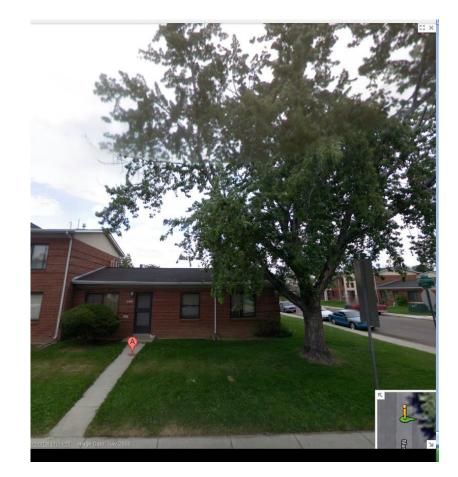
The Urban Forester's Perspective

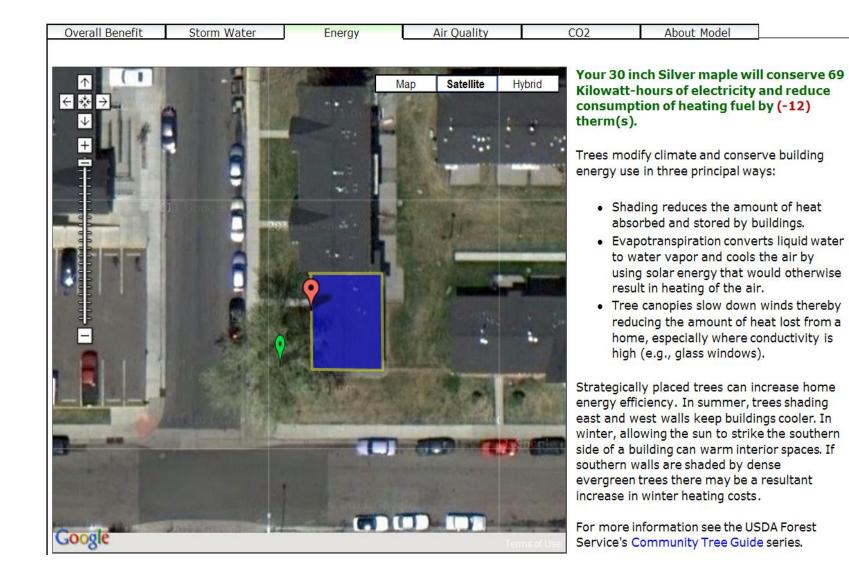
Metro Denver urban forest value

Intersection of public amenities and private property

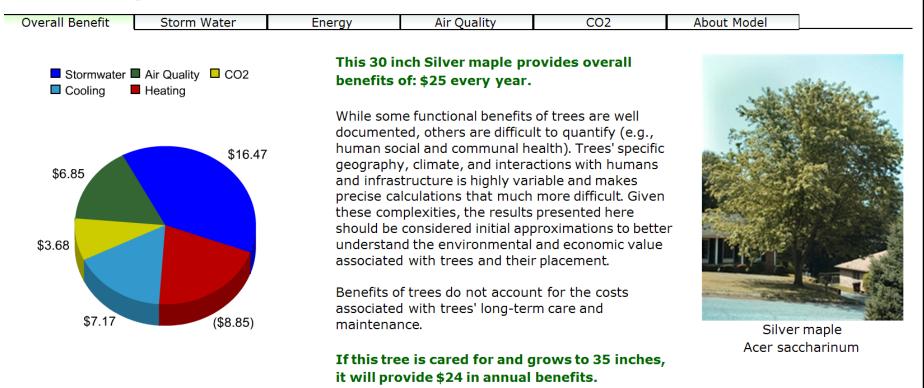
Denver Housing Authority enters into a power purchasing agreement for 2.513 megawatts installed at 668 sites

Public amenity vs. private benefit

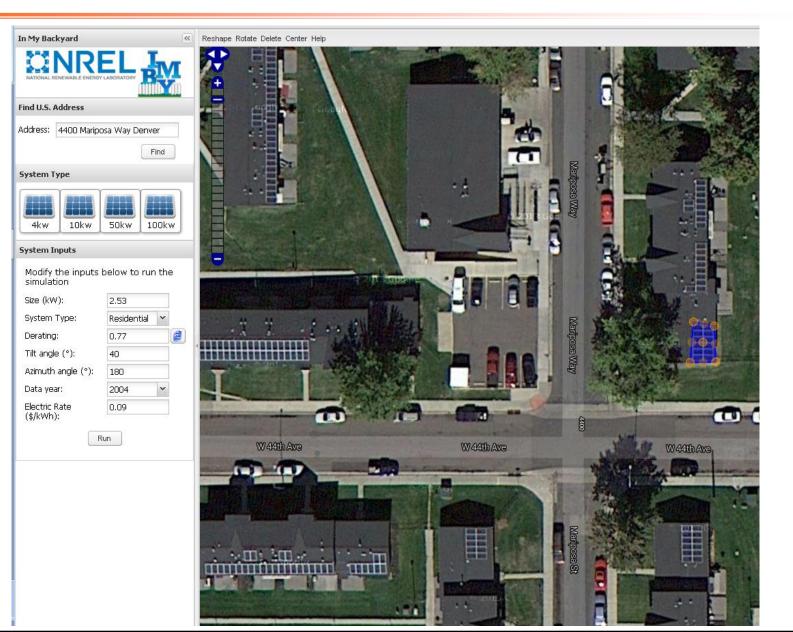



- Specie: silver maple
- DBH: 30"
- Condition: good
- Appraised value: \$13,000
- Status: slated for removal
- Removal cost: \$592.50

Annual Benefits


- Storm water: 3,294 gallons
- Energy: 69 kWh conserved
 -12 therms
- Atmospheric CO2 reduction: 1,150 pounds

iTree

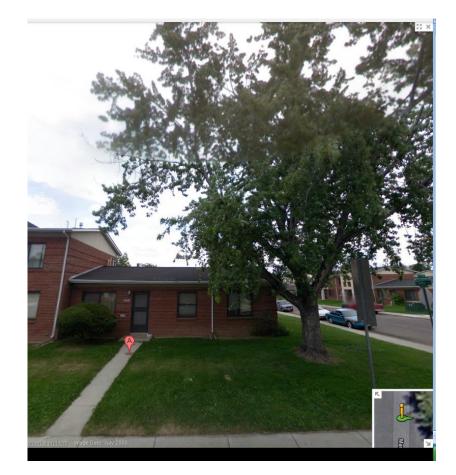


iTree

Breakdown of your tree's benefits

IMBY

IMBY


FV Generat	tion Profile					Load
System Inputs			System Ou	tputs		Now compare your estimated solar electricity production with your electricity consumption.
Modify the inputs below to	This tables shows the amount of electricity (kWh) generated by this system each month and the dollar amount that those values			Step 1. Select a load profile. You may select a residential sample profile or		
Size (kW): 2.53						
System Type: Residential 👻			translate into.			upload your own custom load profile. The residential load profile is based on a 4kW
Derating:	0.77		Month January	Output (KWh)	Value* (\$)	system. (A) Use a residential load profile. Choose a city from the drop-down box below. Sample Profile: Select
Tilt angle (°):	40			295	26.55	
			February	295	26.55	
Azimuth angle (°):	180		March	397	35.73	
Data year:	2004 🗸		April	346	31.14	
Electric Rate (\$/kWh):	0.09		May	360	32.40	
			June	293	26.37	
Payback			July	300	27.00	(B) Upload a load profile. Click the Upload File button below. Then
The form below shows the values used to estimate the payback for this system, help			August	327	29.43	
			September	334	30.06	browse to locate your load profile document. For help click <u>here</u> Browse
Initial Cost (\$/Wdc):	5.71		October	302 303	27.18	
Initial Cost (\$):	14446.3	2	December	315	28.35	
Rebates (\$):	8927.5	2	<	313	20.35	
Tax Credits (\$):	1655.64	2				
After Incentives (\$):	3800		*Value based on a electric rate of			
Payback (years):	11.11		\$0.09/kWh		.e or	Step 2. Run Load Profile.
			To save these results, choose the Export Results button at the bottom right corner of this window.			Run
				5		Find Local Installers Export Results Close

Tree

- Appraised value: \$13,000
- Removal cost: \$592.50

Solar collector

- Cost after incentives: \$3,800
- Payback: II.II years

Tree

- Appraised value: \$21,400
- Removal cost: \$711.00

Solar collector

- Cost after incentives: \$9,200
- Payback: 5.97 years

Public amenity vs. private benefit

Sara Davis

Program Manager City and County of Denver, Office of the City Forester sara.davis@denvergov.org 720-913-0631 9/18/13

solar-usa@iclei.org

solaroutreach.org ICLEIUSA.org