Solar Powering Your Community Addressing Soft Costs and Barriers

Jim Kennerly

North Carolina Solar Center

jdkenne2@ncsu.edu (919) 513-0792

Philip Haddix

The Solar Foundation

phaddix@solarfound.org (202) 469-3743

Agenda

- 10:00 10:30 Introductions and Overview
- 10:30 11:40 Solar 101: Technology, Markets, and Policy
- 11:40 12:15 Planning and Zoning for Solar
- 12:15 12:30 Break
- 12:30 12:40 Interactive Activity Revisited
- 12:40 1:25 Solar Financing Strategies in the Region
- 1:25 1:35 Break
- I:35 2:50 Local Discussion Panel and Audience Discussion

Agenda

10:00 – 10:30 Introductions and Overview

- 10:30 11:40 Solar 101: Technology, Markets, and Policy
- 11:40 12:15 Planning and Zoning for Solar
- 12:15 12:30 Break
- 12:30 12:40 Interactive Activity Revisited
- 12:40 1:25 Solar Financing Strategies in the Region
- 1:25 1:35 Break

I:35 – 2:50 Local Discussion Panel and Audience Discussion

About the SunShot Solar Outreach Partnership

solar electric power association

The SunShot Solar Outreach Partnership (SolarOPs) is U.S. a Department of Energy (DOE) program designed to increase the use and integration of solar energy in communities across the US.

About the SunShot Solar Outreach Partnership

- Increase installed capacity of solar electricity in U.S. communities
- Streamline and standardize permitting and interconnection processes
- Improve planning and zoning codes/regulations for solar electric technologies
- Increase access to solar financing options

About the SunShot Solar Outreach Partnership

Resource Solar Powering Your Community Guide

A comprehensive resource to assist local governments and stakeholders in building local solar markets.

www.solaroutreach.org

Powered by

U.S. Department of Energy

Regional Workshops

Technical Resources Helping Policymakers Understand Best Practices:

- Case Studies
- Fact Sheets
- How-to Guides
- Toolkits

www.solaroutreach.org

One to One Assistance

Quickly get up to speed on key solar policy issues:

- Solar 101
- Planning for Solar
- Implementing an Ordinance
- Streamlining Solar Permits
- Growing your Market

Regional Workshops

One to One Assistance

Receive customized technical support on implementation of smart solar policy

Poll Who's in the room?

Poll What is your experience with solar?

Explore benefits

and

Overcome barriers

Activity: Identifying Benefits

What is the greatest benefit solar can bring to your community? [Blue Card]

Right Now

During Session

After Break

Activity: Addressing Barriers

What is the greatest barrier to solar adoption in your community? [Green Card]

Right Now

During Session

After Break

Agenda

10:00 – 10:30 Introductions and Overview

- 10:30 11:40 Solar 101: Technology, Markets, and Policy
- 11:40 12:15 Planning and Zoning for Solar
- 12:15 12:30 Break
- 12:30 12:40 Interactive Activity Revisited
- 12:40 1:25 Solar Financing Strategies in the Region
- 1:25 1:35 Break

I:35 – 2:50 Local Discussion Panel and Audience Discussion

Solar Technologies

Solar Photovoltaic (PV)

Solar Hot Water

Concentrated Solar Power

Solar Technologies

Solar Photovoltaic (PV)

Concentrated Solar Power

Panel / Module

Array

kilowatt (kW)

Kentucky Solar Market

Cumulative Installed Capacity of Solar PV

Source: Interstate Renewable Energy Council, Solar Market Trends (2009-2012)

U.S. Cumulative Capacity Growth

Source: Interstate Renewable Energy Council, Solar Market Trends (2006-2009) Solar Energy Industries Association, Solar Market Insight (2010-2013)

Solar Development in the US

In 2013, the US solar industry installed

131,000 new solar installations [that's one every four minutes]

of which

94% were residential projects

Source: GTM Research/ Solar Energy Industries Association, U.S. Solar Market Insight 2013 Year-in-Review

Solar Installed Costs

Tracking the Sun VI: The Installed Cost of Photovoltaics in the US from 1998-2012 (LBNL), SEIA/GTM Research Solar Market Insight 2013 Year-in-Review.

Solar Installed Costs

Tracking the Sun VI: The Installed Cost of Photovoltaics in the US from 1998-2012 (LBNL), SEIA/GTM Research Solar Market Insight 2013 Year-in-Review.

Projected Cost Competitiveness

Projected Cost Competitiveness

Solar Job Growth

Source: SEIA Estimates (2006-2009), The Solar Foundation's National Solar Jobs Census 2010 (2010), The Solar Foundation's National Solar Jobs Census 2012 (2011-2012).

Solar Economic Growth

Source: SEIA/GTM Research – 2009/2010/2011/2012 Year in Review Report http://www.seia.org/research-resources/us-solar-market-insight

Global Installed Capacity

Top 5 Countries Solar Operating Capacity (2012)

Source: REN 21, Global Status Report 2013 (http://www.ren21.net/ren21activities/globalstatusreport.aspx)

US Solar Resource

Source: National Renewable Energy Laboratory

35

Installed Capacity

Total US cumulative installed solar capacity

13.0 GW

German solar capacity 11.8 GW additions (2011-2013)

Source: (1) GTM Research/ Solar Energy Industries Association. U.S. Solar Market Insight Report 2013 Year-in-Review; (2) http://www.erneuerbare-energien.de/fileadmin/Daten_EE/Dokumente_PDFs_/ee_energiedaten_agee_stat.pdf; GTM Research/ Solar Energy Industries Association. U.S. Solar Market Insight Report Q3 2013

U.S. Department of Energy

Workshop Goal

Enable local governments to replicate successful solar practices to reduce soft costs and expand local adoption of solar energy

Solar Market: Trends

U.S. Department of Energy

Source: Solar Electric Power Association

Solar Market: Trends

U.S. Department of Energy

Source: Solar Electric Power Association; U.S. Energy Information Administration (Nov 2013)

Solar Market: Trends

A Policy Driven Market

Federal	Investment Tax Credit	Accelerated Depreciation	Qualified Energy Conservation Bond
State & Utility	Renewable Portfolio Standard	Net Metering/ Interconnection	Solar Access
	Permitting & Interconnection	Tax Credits & Exemptions	Direct Cash & Performance Incentives
Local	Property Assessed Clean Energy	Solarize	

A Policy Driven Market

State & Utility	Renewable Portfolio Standard	Net Metering/ Interconnection	Solar Access
	Permitting & Interconnection		

Renewable Portfolio Standard

Renewable Portfolio Standard

Renewable Portfolio Standard

www.dsireusa.org / August 2012

U.S. Department of Energy

RPS Impacts: Solar Deployment

RPS and Solar/DG Status of Top Ten Solar States by Cumulative Installed Capacity (as of Q4 2013)

Ranks	State	RPS?	Solar/DG Provision?
1	California	Y	Ν
2	Arizona	Y	Υ
3	New Jersey	Y	Υ
4	North Carolina	Y	Υ
5	Nevada	Y	Υ
6	Massachusetts	Y	Υ
7	Hawaii	Y	Ν
8	Colorado	Y	Υ
9	New York	Y	Y
10	New Mexico	Y	Υ

Source: DSIRE Solar (<u>http://dsireusa.org/documents/summarymaps/Solar_DG_RPS_map.pdf</u>); Solar Energy Industries Association/ GTM Research Solar Market Insight 2012 Year-in-Review

RPS Impacts: Retail Rates

Source: Various (U.S. Energy Information Administration, Interstate Renewable Energy Council, SEIA/GTM Research, NC Utilities Commission). Links available on request.

A Policy Driven Market

State & Utility	Renewable Portfolio Standard	Net Metering/ Interconnection	Solar Access
	Permitting & Interconnection		

Net metering allows customers to export power to the grid during times of excess generation, and receive credits that can be applied to later electricity usage.

Typical Residential Customer With Net Metering (Summer Season)

Typical Residential Customer With Net Metering (Summer Season)

Net Metering: Market Share

More than 93% of distributed PV Installations are net-metered

Source: IREC (http://www.irecusa.org/wp-content/uploads/IRECSolarMarketTrends-2012-web.pdf)

Net Metering: Kentucky

Kentucky Net Metering Policy:

Credit Value Retail Rate

Credit Rollover Unlimited

Aggregate Limit 1% of previous year utility peak load (kW)

Net Metering: Current Status in Kentucky

U.S. Department of Energy

Source: EIA Forms 826 and 861

Net Metering: Current Status in Kentucky

Net Metering: Resources

Resource Freeing the Grid

Provides a "report card" for state policy on net metering and interconnection

http://freeingthegrid.org/

Standardized interconnection rules require utilities to provide a fair and transparent pathway for customer-generators and other developers of distributed energy resources to interconnect with the utility's grid.

Interconnection: Kentucky

Kentucky Interconnection Policy:

Applicable Technologies PV, Wind, Biomass, Small Hydro

Applicable Utilities/ Customer Classes All

External Disconnect Switch Requirement Yes

- KY interconnection breakpoint at 30kW a significant barrier to development of commercial/utility-scale market.
- Federal level
 - Federal Energy Regulatory Commission (FERC) reissued its Small Generator Interconnection Procedures (SGIP) to permit greater streamlining and more rapid interconnection approvals
 - New SGIP has led Ohio to consider more streamlined interconnection procedures.

Interconnection: Resources

Resource Interstate Renewable Energy Council

IREC developed its model interconnection rules in an effort to capture best practices in state interconnection policies.

www.irecusa.org

A Policy Driven Market

State	Renewable Portfolio Standard	Net Metering/ Interconnection	Solar Access
& Utility	Permitting & Interconnection		

Solar Access

Solar Access Laws:

- I. Increase the likelihood that properties will receive sunlight
- 2. Protect the rights of property owners to install solar
- 3. Reduce the risk that systems will be shaded after installation

Fontainebleau V. Eden Roc (1959)

A landowner does not have any legal right to the free flow of light and air across the adjoining land of his neighbor

Source: Google Earth

Solar Access

Solar Easements Provision

Solar Easements and Solar Rights Provisions

U.S. Virgin Islands

Source: DSIRE

Solar Easement Policy (KRS 381.200):

In Kentucky, solar easements may be obtained for the purpose of ensuring access to direct sunlight. Easements must be expressed in writing and will become an interest in real property that may be acquired and transferred.

Solar Access

Resource Solar ABCs

A comprehensive review of solar access law in the US – Suggested standards for a model ordinance

www.solarabcs.org

Agenda

10:00 – 10:30 Introductions and Overview

10:30 – 11:40 Solar 101: Technology, Markets, and Policy

11:40 – 12:15 Planning and Zoning for Solar

- 12:15 12:30 Break
- 12:30 12:40 Interactive Activity Revisited
- 12:40 1:25 Solar Financing Strategies in the Region
- 1:25 1:35 Break

I:35 – 2:50 Local Discussion Panel and Audience Discussion

Mitigate Soft Costs

Other Paperwork

Permitting

Installation Labor

Customer Acquisition

Source: NREL (http://www.nrel.gov/docs/fy12osti/54689.pdf)

Mitigate Soft Costs

Other Paperwork

Permitting

Installation Labor

Customer Acquisition

Source: NREL (http://www.nrel.gov/docs/fy12osti/54689.pdf)

Challenge: Installation Time

Photon Magazine

Time to Installation

Permitting Costs

Source: NREL, LBNL

Germany's Success

Consistency and Transparency

through

Standardized Processes

Planning for Solar

Remove barriers by:

- Make qualified solar projects a by-right accessory use
- Modify regulations to clarify what types of solar projects are allowed where
- Streamline the permitting process

Zoning Code: Solar Framework

Section	Topics to Address	
Definitions	Define technologies	
Applicability	Primary vs. accessory use	
Dimensional Standards	• Height • Size	SetbacksLot coverage
Design Standards	SignageDisconnect	ScreeningFencing

Zoning Codes: Small Scale Solar

Typical Requirements:

- Permitted as accessory use
- Minimize visibility if feasible
- Requirements:
 - District height
 - Lot coverage
 - Setback

Zoning Codes: Large Scale Solar

Typical Requirements:

- Allowed for primary use in limited locations
- Requirements:
 - Height limits
 - Lot coverage
 - Setback
 - Fencing and Enclosure

Zoning Code: Model Ordinances

Resource Planning and Zoning for Solar Energy

This Essential Info Packet provides a number of articles and guidebooks to help planners plan for solar in their communities.

planning.org/research/solar

The Permitting Process: Challenges

18,000+ local jurisdictions

with unique permitting requirements

Source: http://www.nrel.gov/docs/fy12osti/54689.pdf

The Permitting Process: Challenges

Local permitting processes add on average

to the installation cost of residential PV

Source: SunRun

The Permitting Process: Challenges

Source: Forbes

Expedited Permitting

Solar Permitting Best Practices:

✓ Post Requirements Online

✓ Implement an Expedited Permit Process

Enable Online Permit Processing

✓ Ensure a Fast Turn Around Time

Source: Interstate Renewable Energy Council/Vote Solar

Expedited Permitting

Solar Permitting Best Practices:

- ✓ Collect Reasonable Permitting Fees
- ✓ Do Not Require Community-Specific Licenses
- ✓ Narrow Inspection Appointment Windows
- ✓ Eliminate Excessive Inspections

Train Permitting Staff in Solar

U.S. Department of Energy

Source: Interstate Renewable Energy Council/Vote Solar

Permitting: Best Practices

Residential Solar Permitting Best Practices Resource

Provides explanations of nine best practices designed to streamline local solar permitting processes, along with examples of implementation.

To aid communities in designing effective and efficient solar permitting processes, the Interstate Renewable Energy Council, Inc. (IREC) and The Vote Solar Initiative have identified nine Residential Solar Permitting Best Practices. This document provides additional context for these Best Practices and relevant resources to help communities implement them. For more detail on the examples of where the Best Practices listed below have been implemented as well as additional resources see Sharing Success: Emerging Approaches to Efficient Rooftop Solar Permitting

1. Post Requirements Online

What does this mean? The municipality should Who is already doing it? have a website that offers a one-stop location for residents, businesses and installers to get all Solar One Stop (Pima County and City of Tucson, necessary information on obtaining a solar permit Arizona), solaronestopaz.org in that municipality or region. In particular, the website should include a clear description of the San Jose, CA, www.sanjoseca.gov/index requirements and process for getting a solar permit, aspx?nid=1505 including any necessary forms, and information on fees and inspections. The website could also Berkeley, CA, www.citvofberkeley.info/solarpypercontain checklists for the application and inspection requirements for solar. Why do it? Making these resources easily accessible to solar installers can reduce the number of questions that municipal staff have to answer and can improve the efficiency of the permitting process for all involved. In addition, it can help to increase the quality of applications submitted, which in

soon) their process or requirements, the website is a good way

Vote Solar

www.irecusa.org/wp-content/uploads/2013/09/expanded-best-practices.pdf

Breckenridge, Colorado Population: 4,540

Source:Wikipedia

Breckenridge charges no fees to file for a solar permit

Breckenridge offers a short turn around time for solar permits

Source: Vote Solar (http://votesolar.org/wp-content/uploads/2011/03/COPermitReport.pdf)

U.S. Department of Energy

Expedited Permitting

Resource Solar ABCs

Expedited Permitting:

- Simplifies requirements for PV applications
- Facilitates efficient review of content
- Minimize need for detailed studies and unnecessary delays

Solar America Board for Codes and Standards Collaborate · Contribute · Transform				
	ANDARDS CURRENT ISSUES			
TM International	Codes & Standards			
PMO	The Solar America Board for Codes and Standards (Solar ABCs) collaborates and			
ternational Code Council	enhances the practice of developing, implementing, and disseminating solar codes and standards. The Solar ABCs provides formal coordination in the planning and			
t'l Electrotechnical Comm.	revision of separate, though interrelated, solar codes and standards. We also provide access for stakeholders to participate with members of standards making bodies through working groups and research activities to set national priorities on			
E				
PA – National Elec. Code	technical issues. The Solar ABCs is a centralized repository for collection and dissemination of documents, regulations, and technical materials related to solar			
мі	codes and standards.			
iderwriters Laboratories	The Solar ABCs creates a centralized home to facilitate			
	photovoltaic (PV) market			
	transformation by:			
	Creating a forum that fosters generating consensus 'best			
	practices' materials.			
	Disseminating such materials			
	to utilities, state and other regulating agencies.			
	Answering code-related			
	questions (technical or statutory in nature).			
	 Providing feedback on important related issues to DOE and government agencie 			
	Learn more about solar codes and standards development:			
	The below organizations all publish codes and standards for PV products and each organization has its own process to develop and publish standards.			
	ASTM			
	IAPMO Standards			
	International Code Council			
	International Electrotechnical Commission			
	• <u>IEEE</u>			
	National Fire Protection Association			
	• <u>SEMI</u>			
	Underwriters Laboratories			
	Underwriters Laboratones			
	SEMI Inderwiters Laboratories			
	National Fire Protection Association scart 4			
	TEEE			
	International Electrotechnical Commission			
	International Code Council			
	IAPMO Standards			

Expedited Permitting

Resource Interstate Renewable Energy Council

Outlines emerging approaches to efficient rooftop solar permitting

www.irecusa.org

811105.1	
Sharing Success Emerging Approaches to Efficient Rooftop Solar Permitting	þ
www.irecusa.org	May 2012
Interstate Renewable Energy Cou	ncil, Inc.
Interstate Renewable Energy Cou	ncil, Inc.
www.irecusa.org	May 2012

Mitigate Soft Costs

Creating solar-ready guidelines and promoting energy efficiency at the outset can help make future solar installations easier and more cost effective.

Local Example: Owensboro Metropolitan Planning Commission

iOMPC Comprehensive Plan (Section 7)

As our limited supplies of fossil fuels become further depleted, the potential for solar energy and orientation may demand more of our time and effort. An increase in our awareness of solar issues now will help us lay the ground rules for the solar access, orientation, and compatible building designs that will be appreciated for generations to follow.

Planning for solar at the subdivision stage would greatly increase solar potential and cut the costs for its installation.

Require builders to:

- ✓ Minimize rooftop equipment
- \checkmark Plan for structure orientation to avoid shading
- \checkmark Install a roof that will support the load of a solar array
- \checkmark Record roof specifications on drawings
- \checkmark Plan for wiring and inverter placement

Source: Solar Ready: An Overview of Implementation Practices [Draft]. NREL, Feb. 18, 2011.

Source: Solar Ready: An Overview of Implementation Practices [Draft]. NREL, Feb. 18, 2011.

Resource NREL

Creating a solar ready guide for buildings:

- Legislation
- Certification programs
- Stakeholder Education

www.nrel.gov

Solar Readiness Model Ordinance

Agenda

10:00 – 10:30 Introductions and Overview

- 10:30 11:40 Solar 101: Technology, Markets, and Policy
- 11:40 12:15 Planning and Zoning for Solar
- 12:15 12:30 Break
- 12:30 12:40 Interactive Activity Revisited
- 12:40 1:25 Solar Financing Strategies in the Region
- 1:25 1:35 Break

I:35 – 2:50 Local Discussion Panel and Audience Discussion

Agenda

10:00 – 10:30 Introductions and Overview

- 10:30 11:40 Solar 101: Technology, Markets, and Policy
- 11:40 12:15 Planning and Zoning for Solar
- 12:15 12:30 Break
- 12:30 12:40 Interactive Activity Revisited
- 12:40 1:25 Solar Financing Strategies in the Region
- 1:25 1:35 Break

I:35 – 2:50 Local Discussion Panel and Audience Discussion

Activity: Identifying Benefits

What is the greatest benefit solar can bring to your community? [Blue Card]

Right Now

During Session

After Break

Write answer on card

Benefits Poll

Benefits of Solar Energy

- Economic growth
- Local jobs
- Energy independence
- Stabilizes price volatility
- Valuable to utilities
- Smart investment

Benefit: Stabilize Energy Prices

Source: ISO New England, Inc.

Benefits: Valuable to Utilities

Source: Rocky Mountain Institute

(http://www.rmi.org/Content/Files/eLab-DER cost value Deck 130722.pdf)

Benefits: Valuable to Utilities

Source: Clean Power Research <u>http://mseia.net/site/wp-content/uploads/2012/05/MSEIA-Final-Benefits-of-Solar-Report-2012-11-01.pdf</u>

Benefit: Smart Investment for Homes

From NREL:

Solar homes sold

20% faster

and for

17% more

than the equivalent non-solar homes in surveyed California subdivisions

Source: http://www.nrel.gov/docs/fy07osti/38304-01.pdf

Benefit: Smart Investment for Homes

From SunRun:

Source: Tracking the Sun IV, SunRun

Benefit: Smart Investment for Business

Benefit: Smart Investment for Business

Source: Solar Energy Industries Association

Benefit: Smart Investment for Government

Activity: Addressing Barriers

What is the greatest barrier to solar adoption in your community? [Green Card]

Right Now

During Session

After Break

Write answer on card

Activity: Addressing Barriers

Activity: Addressing Barriers

Barriers Poll

Some things you may hear...

Fact: Solar works across the US

Source: National Renewable Energy Laboratory

Fact: Solar is a ubiquitous resource

Resource Availability

Source: Perez & Perez. 2009. A fundamental look at energy reserves for the planet.

Fact: Declining Solar Costs

Tracking the Sun VI: The Installed Cost of Photovoltaics in the US from 1998-2012 (LBNL), SEIA/GTM Research Solar Market Insight 2013 Year-in-Review.

Fact: Declining Solar Costs

Tracking the Sun VI: The Installed Cost of Photovoltaics in the US from 1998-2012 (LBNL), SEIA/GTM Research Solar Market Insight 2013 Year-in-Review.

Subsidies and Support

Source: U.S. Energy Information Administration. July 2011. Direct Federal Interventions and Subsidies in Energy in Fiscal Year 2010

Subsidies and Support

Source: SEIA, Federal Energy Incentives in the United States (2011), http://www.seia.org/galleries/pdf/Federal_Energy_Incentives_in_the_United_States.pdf

Subsidies and Support

Source: Management Information Services, Inc. October 2011.60 Years of Energy Incentives: Analysis of Federal Expenditures for Energy Development; SEIA, May 1, 2012. Federal Energy Incentives Report.

Agenda

10:00 – 10:30 Introductions and Overview

- 10:30 11:40 Solar 101: Technology, Markets, and Policy
- 11:40 12:15 Planning and Zoning for Solar
- 12:15 12:30 Break
- 12:30 12:40 Interactive Activity Revisited
- 12:40 1:25 Solar Financing Strategies in the Region
- 1:25 1:35 Break
- I:35 2:50 Local Discussion Panel and Audience Discussion

The Solar Equation

- Cost Benefit
- Installed Cost
 Avoided Energy Cost
- Maintenance
 Excess Generation
- Direct Incentive
 Performance Incentive

Solar Market: Trends

The Solar Equation

- Cost Benefit
- Installed Cost
 Avoided Energy Cost
- Maintenance
 Excess Generation
- Direct Incentive
 Performance Incentive

A Policy Driven Market

Federal	Investment Tax Credit	Accelerated Depreciation	Qualified Energy Conservation Bond
State & Utility	Renewable Portfolio Standard		
	Permitting & Interconnection	Tax Credits & Exemptions	Direct Cash & Performance Incentives

Investment Tax Credit

Type: Tax Credit

Eligibility: For-Profit Organization

Value: 30% of the installation cost

Availability: Through 2016

Accelerated Depreciation

Qualified Energy Conservation Bond

Bond Holders

Qualified Energy Conservation Bond

A Policy Driven Market

Federal	Investment Tax Credit	Accelerated Depreciation	Qualified Energy Conservation Bond
State & Utility	Renewable Portfolio Standard		
	Permitting & Interconnection	Tax Credits & Exemptions	Direct Cash & Performance Incentives

State Corporate Tax Credit – for Systems

Type: Passive Solar Space Heat, Solar Water Heat, Solar Space Heat, Solar PV, Wind, Geothermal Heat Pumps, Combination Active Solar Space-Heating and Water Heating System

Eligibility:

Value: \$3/W DC for PV, up to \$1,000 per taxpayer for installations on multi-family residential rental units or commercial property; \$500 for single family residential rental unit

Requirements: Must be installed by a North American Board of Certified Energy Practitioners (NABCEP)-certified installer. PV panels and inverters must meet National Electrical Code (NEC) and be certified by Underwriters Laboratories (UL).

State Corporate Tax Credit – for Facilities

Type: Solar Thermal Electric, Solar PV, Landfill Gas, Wind, Biomass, Hydroelectric, Renewable Fuels

Eligibility: \$500 for solar and wind installations; \$250 for geothermal installations.
 Value: \$3/W DC

Requirements: All tax credits combined may not exceed 50% of the capital investment in the project. Negotiated incentive package may not exceed 25 years.

State Personal/Individual Tax Credit

Type: Passive Solar Space Heat, Solar Water Heat, Solar Space Heat, Solar PV, Wind, Geothermal Heat Pumps, Combination Active Solar Space-Heating and Water Heating System

Eligibility: Residential, Multi-Family Residential

Value: \$3/W DC, up to \$500 for solar and wind installations

Requirements: Must be installed by a North American Board of Certified Energy Practitioners (NABCEP)-certified installer. PV panels and inverters must meet National Electrical Code (NEC) and be certified by Underwriters Laboratories (UL).

Performance-Based Incentive: TVA Green Power Providers

Type: Solar PV, Wind, Biomass, Small Hydroelectric

Eligibility: Commercial, Residential, Nonprofit, Local Government, State Government, Fed. Government, all directly served TVA customers

Value: \$1,000 upon installation, with Years 1-10: retail electric rate + premium payment, and Years 11-20: retail electric rate. 2014 premium rate for PV: 4 cents/kWh.

Requirements: The system must comply with environmental regulations and national standards, be certified by a licensed electrician, and comply with all applicable codes. PV installations approved by TVA in Calendar Year 2013 must be installed by a renewable energy professional with entry-level NABCEP certification.

Performance-Based Incentive: TVA Solar Solutions Initiative

Type: Solar PV

Eligibility: 36 MW of systems sized to: 50 kW-1 MW.

Value: 10-year incentive of \$0.06/kWh.

Requirements: The system must comply with environmental regulations and national standards, be certified by a licensed electrician, and comply with all applicable codes. PV installations approved by TVA in Calendar Year 2013 must be installed by a renewable energy professional with entry-level NABCEP certification.

http://www.tva.com/renewablestandardoffer/ssi_faq.htm

Sales Tax Incentive

Type: Solar PV

Eligibility: 50 kW minimum, with minimum capital investment of \$1M, and capped at 50% of project cost.

Value: Up to 100% of sales and use tax.

Ownership Options

Direct Ownership Third-Party Ownership

Community Ownership

Direct Ownership

Benefits

- Low cost electricity
- REC revenue
- Utilize cheap debt
 - Bonds
 - Low interest loans

Drawbacks

- Large upfront cost
- Long term management
- Can't take tax benefits
- Development risk
- Performance risk

A Variation on Direct Ownership: Energy Service Performance Contracting

How it works

- Energy services company (ESCO) sells an interested customer a package of energy efficiency measures (lighting, HVAC, etc.)
- Package can include measures with both rapid and slower payback periods
- The ESCO guarantees a certain level of electric bill savings for the customer backed up by the efficiency measures.

What Role Can Solar Play in a Performance

Contract?

- Solar PV can act as an energy efficiency measure.
- PV, as a longer-payback energy efficiency measure, can be offered as part of a package of longer- and shorter-payback ESCO-offered incentives that saves larger customers money.

Could also be offered as a bundled 3rd party PPA

A Variation on Direct Ownership: Energy Service Performance Contracting

Benefits

- Low cost electricity
- REC revenue
- Utilize cheap debt
 - Bonds
 - Low interest loans

Drawbacks

- Large upfront cost
- Long term management
- Can't take tax benefits
- Development risk
- Performance risk

Third Party Ownership

Benefits

- No upfront cost
- No O&M costs
- Low risk
- Predictable payments
- Tax benefits

Drawbacks

- Don't keep RECs
- Higher ROI for investor
- Can't use bonds
- Not available in all states

Third Party Ownership: State Policy

Status unclear or unknown

Note: This map is intended to serve as an unofficial guide; it does not constitute legal advice. Seek qualified legal expertise before making binding financial decisions related to a 3rd-party PPA. See following slides for additional important information and authority references.

Benefits of PPAs

Powered by SunShot U.S. Department of Energy

Source: GTM Research/ Solar Energy Industries Association, U.S. Solar Market Insight 2012 Year-in-Review

Agenda

10:00 – 10:30 Introductions and Overview

- 10:30 11:40 Solar 101: Technology, Markets, and Policy
- 11:40 12:15 Planning and Zoning for Solar
- 12:15 12:30 Break
- 12:30 12:40 Interactive Activity Revisited
- 12:40 1:25 Solar Financing Strategies in the Region
- 1:25 1:35 Break

I:35 – 2:50 Local Discussion Panel and Audience Discussion

Agenda

10:00 – 10:30 Introductions and Overview

- 10:30 11:40 Solar 101: Technology, Markets, and Policy
- 11:40 12:15 Planning and Zoning for Solar
- 12:15 12:30 Break
- 12:30 12:40 Interactive Activity Revisited
- 12:40 1:25 Solar Financing Strategies in the Region
- 1:25 1:35 Break

I:35 – 2:50 Local Discussion Panel and Audience Discussion

Activity: Next Steps

What do you pledge to do when you leave today's workshop? [Orange Card]

What do you do next? Sign up for a 20 minute consultation to learn more about how we can help you.

<u>Speak with one of our trainers after the</u> workshop, <u>or email solar-usa@iclei.org</u>

Jim Kennerly

North Carolina Solar Center

jdkenne2@ncsu.edu (919) 513-0792

Philip Haddix

The Solar Foundation

phaddix@solarfound.org (202) 469-3743

Appendix

Morris County, New Jersey Population: 492,276

Bond Holders

Pros

- No upfront cost
- No O&M costs
- Low risk
- Predictable payments
- Tax benefits
- Utilize low cost bonds

Don't keep RECs

Replication of "Morris Model"

Legality of PPA Model

Laws Governing Public Contracts

Laws Governing Bonding

Laws Governing Procurement

Source: NREL . 2011. Financing Solar PV at Government Sites with PPAs and Public Debt

SOLARIZE MASS

Solarize Group Purchasing

solarize portland

Solarize: Mitigate Soft Costs

Source: NREL (http://www.nrel.gov/docs/fy12osti/54689.pdf)

Solarize: Advantages

Barriers Solutions

High upfront cost 🛛 → Group purchase

Complexity

Community outreach

Customer inertia 🛑 Limited-time offer

Solarize: Advantages

Customer Acquisition

Source: NREL, LBNL

Solarize: Advantages

Benefits to Local Government:

Low implementation cost: \$5,000 - \$10,000

Quick turn-around: 9 Months

Long-term impact: Sustainable ecosystem

Solarize: Process

Harvard, Massachusetts Population: 6,520

Source:Wikipedia

Solarize: Case Study

Group Purchasing

Harvard Mass Group Purchasing Tiers

Solarize: Case Study

Marketing Strategy:

- Electronic survey of 1,100 households
- Email newsletters and direct mailings
- Float in July 4 parade
- Articles and advertisements in local newspaper
- Facebook page and online discussion board

Solarize: Case Study

Group Purchasing

Harvard Mass Group Purchasing Tiers

Solarize: Case Study

75 new installations totaling 403 kW

30% reduction in installation costs

575% increase in residential installations

Solarize: Lasting Impact

Source: NREL

Solarize: Resources

Resource The Solarize Guidebook

A roadmap for project planners and solar advocates who want to create their own successful Solarize campaigns.

www.nrel.gov

Benefits and Barriers of Solar Adoption

A presentation for:

Solar Powering Your Community Workshop Owensboro, Kentucky

By: Jason Delambre, CEM

March 27, 2014

Source: Bloomberg, New Energy Finance

ROW: Rest of the World. MEA: Middle East and Africa. APAC: Asia Pacific.

Figure 19 - Global PV cumulative installed capacity share in 2012 (MW; %)

KW Demand (15 Min. Interval)

Hours of the Year (Percent)

Solar Financing

A presentation for:

Solar Powering Your Community Workshop Owensboro, Kentucky

> By: Jason Delambre, CEM & Robert Clark

> > March 27, 2014

Committed to the future of rural communities.

Fort Knox Energy Program One of the Nation's Best

Mr. R.J. Dyrdek, Energy Manager, DPW

Our Second Largest bill on Post behind the labor bill !!

1308111000007020

http://www.youtube.com/watch?v=e4FaGDpX3xA&vq=medium

FOX 41 Fort Knox Energy Video

2.1 MegaWatt Solar Array

- Nolin RECC, our Electrical Privatization Contractor, is constructing a 2.1 MW Solar Array on post.
- Nolin is financing the project over 25 years.
 Fort Knox will pay for KWH produced at a rate comparable to our blended electric rate.
- This green renewable power will supplant electricity generated by LG&E coal-fired power plants. The rate we pay for this solar power is extremely cheap for green power.
- This will support EPACT 2005 mandate of >7.5% renewable energy by 2013
- The Solar Array will be located in a 10 acre field west of Bldg #6034.
- Fort Knox has an additional 1.56 MW of solar power installed at various locations on post.

Performance of the 2,100 kW solar field.

255,595

	Budgeted Output		Actual Energy Output		Estimated Demand	LG&E Bill		
	Energy (kWh)	Financial	Energy (kWh)	Demand (kW)	Reduction Savings	Unit Cost	Savings	Net Savings
Jun-13		N/A						
Jul-13	Partial Month	N/A	23,800			\$1,356.60		
Aug-13	250,919	\$13,623.64	373,120	1,284	\$18,842.38	\$21,267.84	\$34,403.46	\$13,135.62
Sep-13	231,636	\$12,576.66	238,720	1,148	\$16,844.45	\$13,607.04	\$25,836.18	\$12,229.14
Oct-13	231,104	\$12,547.78	157,440	1,229	\$15,182.00	\$8,974.08	\$20,842.99	\$11,868.91
Nov-13	157,873	\$8,571.72	176,640	332	\$4,095.85	\$10,068.48	\$10,961.95	\$893.47
Dec-13	150,291	\$8,160.04	85,120	0	\$0.00	\$4,851.84	\$3,262.52	-\$1,589.32
Jan-14	165,795	\$9,001.82	134,400	0	\$0.00	\$7,660.80	\$5,331.95	-\$2,328.85
Feb-14	185,807	\$10,088.40	146,560	0	\$0.00	\$8,353.92	\$6,019.18	-\$2,334.74
Mar-14	240,076	\$13,034.92						
Apr-14	245,929	\$13,352.71						

Notes:

May-14

Unit cost is the current yearly average cost of energy per kWh. This is presently 5.7¢/kWh

\$13,877.52

Page 1 of 1

Fort Knox Energy Cost Trends and Statistics

Fis	cal Year	KSF	Total Utility Costs	Total Energy (MMBtu)	Total HDD	Total CDD	\$/MMBtu	MMBtu/KSF (AEWRS)
F	Y2012	17,941	\$13,913,551.00	1,079,927	3,408	1,854	\$12.88	58
F	Y2011	17,590	\$15,613,089.00	1,345,229	4,187	1,725	\$11.61	72
F	Y2010	17,988	\$15,833,449.00	1,512,596	4,409	2,026	\$10.47	72
F	Y2009	16,329	\$15,340,898.00	1,473,176	4,165	1,294	\$10.41	82
F	Y2008	15,779	\$16,208,852.00	1,464,183	4,702	1,265	\$11.07	97
	Y2005	15,514	+		4.406	1,496	+==107	118

PROGRESS GRAPH For FORT KNOX

22 January 2014 21405 FORT KNOX

-More than 6M SF use **Geothermal HVAC** -1.57 MW of Solar on roofs -2.1 MW ground mntd solar -All buildings over 7.5K Sq Ft. metered and controlled -Bldg Energy Monitoring System using "Mock Billing" monthly. -Energy Security Project underway to sustain Post energy requirements without outside utilities

Maude Complex Geothermal Pond

NO #1 in CONUS as reported by IMCOM – EOY 2013

Energy per Unit Area Comparison

Installation	FY03 (MBTU/KSF)	FY13 (MBTU/KSF)	% Change
USAG SCHINNEN	85.48	26.69	-68.78
USAG HEIDELBERG	62.77	30.33	-51.68
FORT KNOX	116.73	57.15	-51.04
PICATINNY ARSENAL	269.47	153.64	-42.98
USAG LIVORNO	71.99	41.73	-42.04

We had 50 buildings score in the top 75 percentile in 2013
In 2013 our 2012- 49 Energy Star buildings put just short of the top 25 cities
Building 6434-1/2/3/5 all got 2013 awards and 6434- 6 got a 2014 Award

Program Results

- Improved comfort measured by decreased comfort complaints (90% red.)
- Decreased energy consumption (51% from 2003 baseline)
- Annually saves Fort Knox over \$10 million due to energy initiatives
- Funding invested in energy conservation far exceeds funding spent on utility bills.
- Decreased pollutants: Geothermal systems have greatly reduced # of boilers. Over 63 gas & fuel oil boilers & hw heaters rated 1-10 MMBTU eliminated since 2006.
- Reduced maintenance expenditures & extended useful life of HVAC systems.
 Over 20 MY reduction in Boiler operation and maintenance personnel.
- Currently 52 buildings on Fort Knox are certified "Energy Star". Anticipate another 110 will be rated Energy Star when the application process is completed.
- Decreased Water Consumption by 8% over the past year.
- Fort Knox has been recognized as a leader within the Army and local community for their energy conservation practices

INSTALLATION MANAGEMENT COMMAND

"Sustain, Support and Defend"

Mr. R.J. Dyrdek, Energy Manager, DPW When 'Zero' Means Everything! Affordable & Obtainable Net Zero Energy Design Strategies

Kenny Stanfield, AIA, LEED[®] AP

An automobile's energy performance is measured in miles per gallon (MPG) – the HIGHER the BETTER, or more EFFICIENT.

A building's energy performance is measured in 1,000 British Thermal Units (kBtu)- the LOWER the BETTER, or more EFFICIENT.

In Kentucky, the average cost of I kBtu of energy = \$2,500.00

Energy Use – Climate Zone 🧹

The average school consumes 73 kBtus of energy per SF/YR Zone 7 Zone 6 Zone 5 Zone 4 Zone 3 Zone 2 Zone 1

The Average Annual Cost Of Energy For A Typical 72,000SF Elementary School In Kentucky ...

How "Green" is Green?

Climate Zone 4
73 kBtus annually

ENERGY STAR

54

Energy Star - 25% improvement 54 kBtus annually

51

LEED® Certified Buildings 51 kBtus annually

How "Green" is Green?

What Is A Net Zero Building?

A Net Zero Energy Building Has A Net Site Energy Consumption Of <u>Zero</u> Over A Typical Year Of Operation - (25 kBtu Max)

Richardsville Elementary Warren County Schools The Nation's First Net Zero Public School

72,285 SF 500 Students \$168.00 SF w/out Solar \$206.50 SF w/ Solar

Richardsville Elementary Warren County Schools The Nation's First Net Zero Public School

In 2012, NO Energy Costs

TVA paid WCPS

Site Design & Building Orientation

- north/south building orientation provides active daylighting in academic spaces
- filter storm water run-off
- native, drought-resistant landscaping reduces irrigation
- permeable paving reduces storm water run-off
- reduce or eliminate detention basins
- outdoor educational opportunities for students and faculty

Energy Efficient Systems

- compact building volume reduces area of exposed exterior surfaces
- super-insulated exterior wall and roof systems
- eliminate external air infiltration
- reduce or eliminate large, uninsulated mechanical platforms
- occupancy sensors
- energy efficient HVAC systems
- dual compressor heat pumps and distributive pumping system reduces energy demand
- reduce make-up air in unoccupied or partially occupied spaces
- distributive utility metering

2011 AS&U's Special Citation –

This is an exceptional demonstration of a net-zero school—they have delivered on this commitment. It simply puts to rest the statement 'It can't be done.''' -2011 jury

AWARD WINNING & ENERGY EFFICIENT DESIGN

2008 Outstanding Design Concept for an Elementary School COUNCIL FOR EDUCATIONAL FACILITIES PLANNERS INTERNATIONAL

2011 & 2008 Special Citation Award AMERICAN SCHOOL & UNIVERSITY

2011 Outstanding Energy Efficiency KENTUCKY SUSTAINABLE ENERGY ALLIANCE

ENERGY STAR School

Recipient of the U.S. Environmental Protection Agency's prestigious ENERGY STAR for superior energy efficiency

LEED Gold Registered Pursuing U.S. Green Building Council Gold Certification

High Performance Thermal Envelope

- Compact Building Volume Reduces Areas Of Exposed Exterior Surfaces
- Super Insulated Exterior
 Wall & Roof Systems
- Reduce External Air Infiltration
- Reduce Or Eliminate Large Mechanical Platforms

Richardsville: Energy Usage

Geothermal HVAC System

- Dual Compressor Or Two-Speed Heat Pump Units
- Part Load Efficiency
- Distributive Pumping
- One Heat Pump Per Two Classrooms

Outside Air Ventilation

- Dedicated Outside Air Systems (DOAS)
- Heat Recovery Wheel
- Demand Control
 Ventilation Based On
 CO₂ And Occupancy
- Occupant Diversity

Daylight Harvesting

- reflect natural light into classrooms
- reduce glare at work surfaces
- automated dimming reduces artificial lighting requirements
- interior solar tubes supplement daylighting
- sloped ceilings project natural light into the classroom
- aerogel insulated glazing and low-e coating reduces solar heat gain

Lighting – Unoccupied

Dark Sky Approach

- Local Police
 Collaboration
- Façade Lighting Controls
- Eliminate Building Night Lighting

Healthy Kitchen Design

- Test Kitchen Evaluation
 & Recommendations
- Appliances
- Eliminate Type I Hood Type II Hoods
- Healthy Foods & Locally Grown

Energy Free Lunches

e Keniusky School Board

Summer Leade Are you ready

CARING ABOULDAY CARE

State board eyes trainin

ED EFFICIENCIES

ENERGY TAKES **A LUNCH BREAK**

Warren County's energy-free lunches promote fun and responsibilit

students.

like a picnic lunch for them."

and eat it out of the bag."

dents' horizons."

hunches

"Other than making the sandwiches, everything else is less

time consuming. It's easier and the kids have more fun. It's

Instead of picking up a tray when they go through the lunch line, students get a brown paper bag and fill it with a sandwich, fresh fruits and vegetables, cracker packs, or

even a salad in a bag that has proven wildly popular with

"Salad is one of the harder things to get kids to eat," Howard said. "The last time we did this, we sold 200 salads

students like that. They just open it, pour in their dressing

School board Chairman Mike Wilson said the program has been successful on several levels.

"Students know why we're doing this," he said. "They

understand the rationale behind not having the kitchen

sented to you in a different way or in a different setting,

Natcher Elementary fourth-grader Melek Muradova

out the carrots (in little bags) because carrots are really

said there are several things she likes about the energy-free

"I like the energy savings," she said. "I like how they give

in nutrition. You may not like one item, but if it's pre-

you may try something you previously thought you didn't like and find out you do like it. It broadens stu-

all fired up that day. And this is also a new way to engage

in a bag. It's presented to them in a different way and

By Jennifer Wohlleb Staff Writer

Sam Dorris, who will be a second-grader at Natcher Elementary in Warren County, spent a happy lunch period toward the end of this past school year, spelling out his name with a bag of Scrabble Cheez-it crackers while munching through the rest of his lunch. He and his classmates were enjoying the novelty of eating a bag lunch in the cafeteria instead of the usual hot plate lunch on a tray. And the fact that this lunch was saving energy?

"I like that, too," he said.

Elementary schools in Warren County held four "energy-free lunch" days this spring, which had the cafeterias shutting down ovens and fryers, turning off heat lamps and running other kitchen equipment at minimal levels. "We found that 22 percent of the energy in our schools

was being consumed by the kitchens," said Food Services Manager Gina Howard, who said the district made that discovery as it planned and built Richardsville Elementary. the nation's first public school built to be net-zero energy, completed last year.

Howard said the idea for energy-free lunches came from an article in the School Nutrition Journal, and students and staff have eaten it up.

"It's actually a lot easier (to make) than a regular menu," said Plano Elementary Cafeteria Manager Paula Hale.

12 • Kentucky School Advocate • July/August 2011

Above, students at Natche

Elementary fill their brow fill their brown bags as part of an energy-free lunch day. Right, Plano Elementary student Elijah Burckhard, rel-ishes an apple during lunch. Students say the fresh fruits and yeartsand vegeta-bles are one their favorite their favorite parts of the energy-free

good. It's more fun to eat this way and you don't have to do trays." Jay Wilson, Warren County's energy manager, said the energy savings from these few days can't be determined, but efforts like these are still important.

"Definitely, it is important for our food services to serve such meals for the nutritional-educational benefits," he said. "It also displays the overall support from Mrs. Howard and her food service personnel for the district's ever-evolving energy conservation program."

Board member Mike Wilson said being energy conscious is just good policy for school boards.

"You build a building one time, but you heat it, cool it, and equip it every day for the next 40 or 50 years," Wilson said. "Seven or eight years ago when we entered into our energy education program, we wanted to be good stewards for the taxpayers' dollars and be as efficient as possible. Every dollar we save in energy costs goes back into teachers, salaries, textbooks, and other areas that directly impact students' learning." #

DARK IS THE NEW GREEN

t Walton-Verone pendent Schools, gree isn't only the color of recystion, but A isn't only the color of money and conservation, but it is also becoming the color of safety. By turning of the lights at night, the district is both turning on sav-ings and increasing safety. All the district's lights, from the classroom to the parking lots, are on motion aemostrs at night. "When police come by doing their parton and they see lights on in the building they know that there's a problem because it should be dark," said Superintendent Bill Boyle.

he dark," said Superintendent BU Boyle. The district has had a dark cam-pus since 2006. "We wanted to do it years ago, hut back then, building codes, re-quired a certain amount of light in building at night, the said. "That's changed. The building codes have can now have all lights off in the building when this closed, except for the ones by an entrance. So 99 per-cent of our building is dark. When some one walks into our building, it trips the mouton sensor." The same goes for pairing lott, making it easy for police and oth-ers to spot anyone who shouldn't be there at night. Boyle said because Walton-Verona is a growth district, trying to determine the savings from this like trying to hat a moving target But he said the change has been

"We've gone the opposite way in terms of the old prevailing wisdom that said the more light the better, and we haven't had any incidents so far. We didn't want the lights on for the criminals to be able to see what they are doing." Boyle said, laughing. **≭**

Computers

TVA Test Case

- 7.5% Of Energy In "Tested" School Was Consumed By Computers
- Wireless Technology Throughout
- Laptop Carts In Lieu Of Computer Labs
- Equipment Off At Night
- Reduces Power Consumption By 50%

Richardsville PV System Phase I

- 60% Of Required Generation
- Operational February 2011
 - 208 kW Thin Film
- 245 MWh/yr Electric Production

Richardsville PV System Phase II

- 100% Required Generation
- Operational September 2011
- 138 kW On Shade
 Structure
- Delayed For Old School Demolition
- 163 MWh/YR Electric Production

Solar Electric Generation Cost

Solar Package & Shade Structure

- \$2,766,664 -\$7.93/kW
- January 2010
- Awarded \$1,380,000
 Grant
 - Stimulus Funds
- TVA Pays \$0.12/kWh
 - Greater Than the Selling Price

Net Zero Energy MWh Summary

Read Date 2012	MWh Consumed	MWh Generated	MWh Difference
December	30.2	20.1	10.1
November	37.1	29.7	7.4
October	33 2	74.6	-1.4
September	Richards	ville	0.5
August 🤜	genero		-17.3
July	 The second second		-29.4
June	47.8 N	iwn <	-29.5
May	more the	an it <	-6.8
April	consum	ned!	-5.5
March		1.9	-1.3
February	33.8	19.5	14.3
January	26	14.9	11.1
Total	396	443.8	-47.8

Net Zero Energy Cost Summary

Read Date 2012	Consumption Cost	Generation Cost	Monthly Cost
December	\$4,233	(\$4,315)	(\$82)
November	\$4,856	(\$6,477)	(\$1,621)
October	\$4, 5	(\$7,529)	(\$2,574)
September	7.	86)	(\$3,653)
August	<u> </u>		(\$6,564)
July	energy co	osts &	(\$8,353)
June <	> earne		(\$8,171)
May			(\$4,693)
April	\$40,1	64 🕎	(\$3,356)
March	in 201	2! (75)	(\$2,563)
February	54 5 1	(\$4,166)	\$691
January	\$4,010	(\$3,235)	\$775
Total	¢54 250	(\$04 514)	(\$10 141)

Total

\$56,350 (\$96,514) **(\$40,164)**

Three Dimensional Teaching Tool

Every hallway has an energy related theme. The Geothermal Hall demonstrates how water heats and cools the school.

Green Screens demonstrate the school's daily energy use.

Growing Minds... Energy Teams

- The Energy Initiative Is Spreading District Wide
- Each School Has An Energy Team With An Energy Kit To Monitor Consumption & To Perform Energy Audits For Efficiency

 Teams Focus On Energy Awareness, Student
 Achievement (Math And Science) And Building
 Energy Leaders

Utility Bills Don't Lie...

WARREN RURAL ELECTRIC COOPERATIVE CORPORATION

C	one Energ ooperativ	re 🔨	(270) 842-65		(270)	586-3443 844-1664	Leitch (270) 25	9-3161 (270	r gantown) 526-3384) 844-1707	Pay by Phone (270) 842-3234 (866) 319-3234
ACCOUNT NUMBER		3979	17042		ME	TER LOC	ATION	RICHARDSVI	LLE RD	1775
SERVICE FROM	то	NO. DAYS	READING PREVIOUS	PRES	SENT	NULT	KWH	USAGE		CHARGES
07/16/12 08/16/12 31 O DEMAND: READING ACTUAL				0 BILLI	I Ed		36894	•	2,056.30	
	210.780)	210.780		210.7	30				2,199.47
TVA FUEL COS DISTRIBUTION POWER GENERA SCHOOL TAX	CHARGE		0.024300					36894		886.02 40.00 11,901.51 155.45
CURRENT CHAR PREVIOUS BAL		I SERV	ICE							-6,564.27 27,009.71
Current Bill Due Date Does Not Apply To Customer Name			-				BAL DO NOT P	_		
		BILLING DATE	DATE PAY		AYMENT DUE DATE		TOTAL DUE NOW:		-33573.98	
WARREN C	O BD OF E	ED	08/22/12		09/05/12		AFTER	R DUE DATE PAY:		33573.98
41202 27659 13774 A S O	<u><u></u> <u></u> </u>	Į Į	₽₽₽₽₽	E S A G E S				elieve customer's pay	•	
			RETAIN T		COPY FOR	VOUR	FCORDS			
			PLEASE DETACH					MENT	KY05350R	
						Addr	55			Account Number
Warren Rural Electric Cooperative Corpora			tion	n Cay State Zp					397917042	
951 Fairview Avenue, P.O. Box 1118 Bowling Green, Kentucky 42102				Telephone: Email Date					Date Due	
ADDRESS SERVICE REQUESTED				Prease indicate change of appression telephone number to					09/05/12	
							harge to: MasterC			Total Due Now
							count No			-33573.98 After Due Date Pay
							gnature			-33573.98
			հունուղերիլիկինիի	P			WRE			
WARREN NEW RIC PO BOX	CHARDSVI 51810	LLES	CHOOL 2102-6810					30x 3200 iinsville, KY 42241-3	200	

Kenny Stanfield, AIA, LEED[®] AP

Sherman Carter Barnhart

© 2014 Sherman Carter Barnhart