Solar Powering Your Community Addressing Soft Costs and Barriers

The SunShot Solar Outreach Partnership (SolarOPs) is a U.S. Department of Energy (DOE) program designed to increase the use and integration of solar energy in communities across the US.

- Increase installed capacity of solar electricity in U.S. communities
- Streamline and standardize permitting and interconnection processes
- Improve planning and zoning codes/regulations for solar electric technologies
- Increase access to solar financing options

Resource Solar Powering Your Community Guide

A comprehensive resource to assist local governments and stakeholders in building local solar markets.

www.energy.gov

Sunshot Resource Center Resource

- Case Studies
- Fact Sheets
- How-To Guides
- Model Ordinances
- Technical Reports
- Sample Government Docs

Becky Campbell

Solar Electric Power Association

Philip Haddix

The Solar Foundation

bcampbell@solarelectricpower.org 202.559.2030

phaddix@solarfound.org 202.469.3743

Agenda

08:40 - 09:00	Solar 101
09:00 – 09:50	Creating a Regulatory Landscape for Solar
09:50 - 10:00	Break
10:00 - 10:20	Benefits and Barriers Activity
10:20 - 10:50	Understanding Utility Regulations
10:50 - 11:20	Understanding Solar Financing
:20 - :30	Break
11:30 - 12:00	Installing Solar on Municipal Facilities
12:00 - 12:30	Next Steps for Solar in Region

Agenda

08:40 - 09:00	Solar 101
09:00 - 09:50	Creating a Regulatory Landscape for Solar
09:50 - 10:00	Break
10:00 - 10:20	Benefits and Barriers Activity
10:20 - 10:50	Understanding Utility Regulations
10:50 - 11:20	Understanding Solar Financing
:20 - :30	Break
11:30 - 12:00	Installing Solar on Municipal Facilities
12:00 - 12:30	Next Steps for Solar in Region
Powered by	

Poll Who's in the room?

Poll What is your experience with solar?

Solar Technologies

Solar Photovoltaic (PV)

Solar Hot Water

Concentrated Solar Power

Solar Technologies

Solar Photovoltaic (PV)

Solar Hot Water

Concentrated Solar Power

Panel / Module

Array

kilowatt (kW)

Workshop Goal Enable local governments to replicate

successful solar practices and expand local adoption of solar energy

Explore benefits

and

Overcome barriers

Activity: Identifying Benefits

What is the greatest benefit solar can bring to your community? [Blue Card]

Right Now

During Session

After Break

Activity: Addressing Barriers

What is the greatest barrier to solar adoption in your community? [Green Card]

Right Now

During Session

After Break

Agenda

08:40 - 09:00	Solar 101
09:00 - 09:50	Creating a Regulatory Landscape for Solar
09:50 – 10:00	Break
10:00 - 10:20	Benefits and Barriers Activity
10:20 - 10:50	Understanding Utility Regulations
10:50 - 11:20	Understanding Solar Financing
:20 - :30	Break
:30 - 2:00	Installing Solar on Municipal Facilities
12:00 - 12:30	Next Steps for Solar in Region

U.S. Department of Energy

U.S. Department of Energy

Time to Installation

Photon Magazine

Installed Capacity

Total installed solar capacity in the US

4 GW

Capacity installed in Germany in Dec 2011

http://www.map.ren21.net/GSR/GSR2012.pdf

Installed Capacity

http://www.map.ren21.net/GSR/GSR2012.pdf

Germany's Success

Consistency and Transparency

through

Standardized Processes

Mitigate Soft Costs

- Interconnection
- Financing
- Permitting
- Customer Acquisition
- Design & Installation

Source: NREL (http://www.nrel.gov/docs/fy12osti/54689.pdf)

Mitigate Soft Costs

Source: NREL (http://www.nrel.gov/docs/fy12osti/54689.pdf)

Creating solar-ready guidelines and promoting energy efficiency at the outset can help make future solar installations easier and more cost effective.

Solar Readiness

Require builders to:

- ✓ Minimize rooftop equipment
- \checkmark Plan for structure orientation to avoid shading
- \checkmark Install a roof that will support the load of a solar array
- ✓ Record roof specifications on drawings
- \checkmark Plan for wiring and inverter placement

Solar Readiness

Source: Solar Ready: An Overview of Implementation Practices [Draft]. NREL, Feb. 18, 2011.

Solar Readiness

Source: Solar Ready: An Overview of Implementation Practices [Draft]. NREL, Feb. 18, 2011.

Solar Readiness: Case Study

Oro Valley, Arizona Population: 40, 195

Source:Wikipedia
Solar Readiness: Case Study

Oro Valley Requirements:

- Installation of conduit or sleeve for wiring
- Site plan must indicate the best roof space for PV panels and provide a roof structure to support additional weight
- A space near the service equipment to mount additional PV equipment (meter, inverter, disconnect switches)
- Installation of a circuit breaker that can accommodate a PV system

Solar Readiness

Resource NREL

Creating a solar ready guide for buildings:

- Legislation
- Certification programs
- Stakeholder Education

www.nrel.gov

Mitigate Soft Costs

Interconnection

Financing

Permitting

Customer Acquisition

Design & Installation

Source: NREL (http://www.nrel.gov/docs/fy12osti/54689.pdf)

Customer Acquisition

SOLARIZE MASS

Solarize Group Purchasing

Solarize: Advantages

Barriers Solutions

High upfront cost 🛛 → Group purchase

Complexity — Community outreach

Customer inertia 💛 Limited-time offer

Solarize: Advantages

Benefits to Local Government:

Low implementation cost: \$5,000 - \$10,000

Quick turn-around: 9 Months

Long-term impact: Sustainable ecosystem

Solarize: Process

Harvard, Massachusetts Population: 6,520

Source:Wikipedia

Solarize: Case Study

Group Purchasing

Harvard Mass Group Purchasing Tiers

Solarize: Case Study

Marketing Strategy:

- Electronic survey of 1,100 households
- Email newsletters and direct mailings
- Float in July 4 parade
- Articles and advertisements in local newspaper
- Facebook page and online discussion board

Solarize: Case Study

Group Purchasing

Harvard Mass Group Purchasing Tiers

Solarize: Case Study

75 new installations totaling 403 kW

30% reduction in installation costs

575% increase in residential installations

Solarize: Lasting Impact

Source: NREL

Solarize: Resources

Resource The Solarize Guidebook

A roadmap for project planners and solar advocates who want to create their own successful Solarize campaigns.

www.nrel.gov

Mitigate Soft Costs

Powered by SunShot U.S. Department of Energy

Source: NREL (http://www.nrel.gov/docs/fy12osti/54689.pdf)

Zoning Code: As-of-Right

With "as-of-right" siting, development may proceed without the need for a special permit, variance, amendment, waiver, or other discretionary approval

Zoning Codes

Update zoning codes to:

- ✓ Remove barriers for solar installers
- ✓ Drive growth in your local solar market
- ✓ Ensure public safety
- ✓ Mitigate potential nuisances from solar equipment
- \checkmark Increase clarity and lower costs for local officials

Zoning Codes: Regulations

Section	Topics to Address
Permitted Uses	Primary vs. accessory
Dimensional Standards	HeightSetbacksLot coverage
Development Standards	ScreeningSite PlanningPlacement
Definitions	Types of solar systems

Zoning Codes: Small Scale Solar

Typical Requirements:

- Permitted as accessory use
- Minimize visibility if possible
- Requirements:
 - District height
 - Lot coverage
 - Setback

Zoning Code: Small Scale Solar

Resource Pennsylvania Model Ordinance

Prepared to assist local governments in establishing reasonable standards to facilitate the development of small-scale solar

state.pa.us

Governor's Solar Working Group

Here comes the Su 12/1/20

Solar Energy Systems

Zoning Codes: Large Scale Solar

Typical Requirements:

- Allowed for primary use in limited locations
- Requirements:
 - Height limits
 - Lot coverage
 - Setback
 - Fencing and Enclosure

Zoning Code: Large Scale Solar

Resource Massachusetts Model Ordinance

Prepared to assist local governments in establishing reasonable standards to facilitate the development of large-scale solar installations

www.mass.gov

Allowing Use of	Model As-of-Right Zoning Bylaw: f Large-Scale Ground-Mounted Solar Photovoltaic
	Installations
	Prepared by: Department of Energy Resources
Massachu	usetts Executive Office of Environmental Affairs
	March 2012
This Model Bylaw was pro	epared to assist cities and towns in establishing reasonable
standards to facilitate dev	velopment of large-scale ground-mounted solar photovoltaic
specific review by municip	pal counsel.
0 Durmana	
no rurpose	
he purpose of this bylaw i hotovoltaic installations by peration, monitoring, mod inimize impacts on scenic surance for the eventual d	is to promote the creation of new large-scale ground-mounted solar y providing standards for the placement, design, construction, fifecation and removal of such installations that address public safety, e, natural and historic resources and to provide adequate financial decommissionien of such installations.
he provisions set forth in t	this section shall apply to the construction, operation, and/or repair of
rge-scale ground-mounted	d solar photovoltaic installations.
1.1 Applicability	
This section applies to 1	large-scale ground-mounted solar photovoltaic installations
pertains to physical mod	difications that materially alter the type, configuration, or size of
these installations or rel	lated equipment.
Approximate size of insta of 250 kW (DC) occupies Smaller installations (un Community is not intende	illation: A solar photovolusic array with a rated name plate capacity approximately one acre of land. dep 250 kWy: The above requirement for qualification as a Green to diverseme construction a clear photovoltacit insultations: that
are smaller than 250 kW, barriers that may adverse	a to associate of construction of solar providence instantiations mut but rather to ensure that in designated locations local regulatory ely affect large-scale ground-mounted projects are minimized.
hurriers that may adverse	th affect farge-scale ground-mounted projects are minimized.
Community in our internation are smaller than 250 kH, harriers that may adverse	to discounge construction di originato facultatione has but rather to course that the designated facultation local regulatory by affect large-scale ground-mounted projects are minimized.
Nualty Installious (Im Community is not instando are smaller dans 250 kH burriers that may adverse	46. 258. MIS: The solver sequirance for gaugification as a Groun In a discourge countertrain of solar phonotolistic installations that the rather to counce that to designated focultion hourd regulatory by affect large-scale ground-mounted projects are minimized.
of 250 kW (DG) occupies Smaller Installinitions (un Communy in not interach Narriers that may adverse	approximately one acre of land. der 256 MD: The above requirement for qualification ac a Green of a discommunge construction of solar photovolutic installiation that has future to conserv that in designated freedom boat experimen- ty effect large-scale ground-monomed projects are minimized.

Purpose of Solar Access Laws:

- I. To increase the likelihood that properties will receive sunlight
- 2. To protect the rights of property owners to install solar
- 3. To reduce the risk that systems will be shaded after installation

Fontainebleau V. Eden Roc (1959)

A landowner does not have any legal right to the free flow of light and air across the adjoining land of his neighbor

Source: Google Earth

Solar Easements and Solar Rights Provisions

What can you do?

 \checkmark Revise local ordinances that pose unintended obstacles

✓ Consider a solar access permit scheme

 \checkmark Require written solar easement agreements

✓ Dedicate solar easements for newly constructed buildings

Solar access ordinances best practices:

- Define the solar energy equipment protected
- Define the types of structures covered by the law
- Quantify what constitutes unreasonable restrictions
- Award costs to prevailing parties in civil action with HOA
- Don't restrict solar installations because of aesthetics

Resource Solar ABCs

A comprehensive review of solar access law in the US – Suggested standards for a model ordinance

www.solarabcs.org

The Permitting Process: Challenges

18,000+ local jurisdictions

with unique permitting requirements

Source: http://www.nrel.gov/docs/fy12osti/54689.pdf

The Permitting Process: Challenges

Local permitting processes add on average

to the installation cost of residential PV

Source: SunRun

The Permitting Process: Challenges

Source: Forbes
Expedited Permitting

Solar Permitting Best Practices:

 \checkmark Fair flat fees

✓ Electronic or over-the-counter issuance

Standardized permit requirements

\checkmark Electronic materials

Expedited Permitting

Solar Permitting Best Practices:

- \checkmark Training for permitting staff in solar
- \checkmark Removal of excessive reviews
- \checkmark Reduction of inspection appointment windows
- ✓ Utilization of standard certifications

Breckenridge, Colorado Population: 4,540

Source:Wikipedia

Breckenridge charges no fees to file for a solar permit

Breckenridge offers a short turn around time for solar permits

Source: Vote Solar (http://votesolar.org/wp-content/uploads/2011/03/COPermitReport.pdf)

Source: Breckenridge, CO (http://www.townofbreckenridge.com/index.aspx?page=694)

Expedited Permitting: Best Practices

Resource Solar ABCs

Expedited Permitting:

- Simplifies requirements for PV applications
- Facilitates efficient review of content
- Minimize need for detailed studies and unnecessary delays

Contra Annon	Collaborate + Contribute + Transform
	7
ABOUT US CODES & ST	FANDARDS CURRENT ISSUES
	Codes & Standards
AS IM International	The Solar America Board for Codes and Standards (Solar ABCs) collaborates and
International Code Council	enhances the practice of developing, implementing, and disseminating solar codes
Int'l Electrotechnical Comm	revision of separate, though interrelated, solar codes and standards. We also
IEEE	provide access for stakeholders to participate with members of standards making bodies through working groups and research activities to set national priorities on
NFPA – National Elec. Code	technical issues. The Solar ABCs is a centralized repository for collection and discernination of doguments, regulations, and technical materials related to solar.
SEMI	codes and standards.
Underwriters Laboratories	The Solar ABCs creates a certralized home to facilitate photovortaic (PV) market transformation by:
	Creating a forum that fosters generating consensus best practices' materials.
	Disseminating such materials to utilities, state and other regulating agencies.
	Answering code-related questions (technical or statutory in nature).
	 Providing feedback on important related issues to DOE and government agencies
	Learn more about solar codes and standards development:
	The below organizations all publish codes and standards for PV products and each organization has its own process to develop and publish standards.
	ASIM
	 IAPMO_Standards
	 International Code Council
	 International Electrotechnical Commission
	• IEEE
	National Fire Protection Association
	• SHM
	Onderwriters Laboratories
	Underwriters Laboratories
	• SEMI
	National Fire Protection Association
	• IEEE
	 International Electrotechnical Commission

Expedited Permitting: Best Practices

Resource Interstate Renewable Energy Council

Outlines emerging approaches to efficient rooftop solar permitting

www.irecusa.org

Emerging Approacto Efficient Roo	hes
Solar Permitting	ftop
www.irecusa.org Interstate Renewable Ene	May 2012
www.irecusa.org	May 2012
Interstate Renewable Ene	rgy Council, Inc.
www.irecusa.org	May 2012
Interstate Renewable Ene	rgy Council, Inc.

Expedited Permitting: Application

SOLAR PV SYSTEM INSTALLATIONS WITH AN ELECTRICAL PERMIT ONLY

If the Licensed Electrical Contractor can commit to meeting the following installation conditions, limitations and requirements in the installation of the solar PV system, the Department will waive the requirement for a separate building permit and allow the electrical permit to apply to the full installation.

A separate building permit application with construction plans must be obtained if the following conditions and requirements cannot be met or the Electrical Contractor performing the electrical installation is not willing to accept responsibility for the structural installation of the system.

Conditions:

- Installation must be on the roof of a one- or two-family dwelling.
- Installation may not occur on roof systems comprised of engineered trusses. These systems will require building permits
- Property is <u>not</u> designated historical by the Philadelphia Historical Commission.
- Electrical Contractor must agree to accept responsibility for the structural installation of the roof-top equipment.
- If the contractor finds the installation cannot meet these requirements, a separate building permit must be obtained.

Installation Limitations and Requirements

- Equipment weighs less than 5 pounds per square foot (psf).
- Equipment imposes less than 45 psf point load in any location.
- The height of the system is less than 18 inches above the adjacent roof.
- A three (3) foot clearance must be provided around all equipment.
- Installation includes a pre-engineered ballasted or mounting structure with attachments both designed for a wind load of 90 mph.
- The equipment must be installed as per manufacturer's instructions.

Expedited Permitting: Application

Electrical Permit Limitations and Requirements

Specifically, the system must be 10kW or less, be composed of four or less series strings, and have a total inverter capacity of less then 13.44kW, with all materials, devices and equipment labeled and listed by a certified testing agency. Solar PV system electrical permit applications must include the following information:

- Detailed riser diagrams
- Conduit and wiring details
- Grounding detail

- Electrical service information
- Module information
- Inverter information

Electrical Permits

Systems that meet the electrical limitations detailed above may be eligible for a streamlined permit review. For more specific information on the electrical permit requirements above, please see our "Permit Checklist for Solar PV Systems."

Zoning Requirements

Solar PV systems installed on the roof of a one- or two- family dwelling do not require a zoning permit.

Application Process

When Licensed Electrical Contractors apply for a permit related to the electrical work required to properly install a solar PV system on one or two family dwellings, they may agree to meet the conditions, limitations and requirements of the Building Code established in this Solar PV Installation Standard.

This agreement to meet the limitations and requirements above must be noted in the "Brief Description of Work" field on a standard electrical permit application and the application signed by the Electrical Contractor.

Expedited Permitting: Application

Source: City of Irvine, Department of Community Development (http://www.cityofirvine.org/cityhall/cd/buildingsafety/permit_processing_center/residential_photovoltaic_systems/defaul t.asp)

Mitigate Soft Costs

Source: NREL (http://www.nrel.gov/docs/fy12osti/54689.pdf)

Agenda

- 08:40 09:00 Solar 101
- 09:00 09:50 Creating a Regulatory Landscape for Solar
- 09:50 10:00 Break
- 10:00 10:20 Benefits and Barriers Activity
- 10:20 10:50 Understanding Utility Regulations
- 10:50 11:20 Understanding Solar Financing
- 11:20 11:30 Break
- II:30 I2:00 Installing Solar on Municipal Facilities
- |2:00 |2:30
- Next Steps for Solar in Region

Agenda

U.S. Department of Energy

08:40 - 09:00Solar 101 09:00 - 09:50Creating a Regulatory Landscape for Solar 09:50 - 10:00Break |0:00 - |0:20|**Benefits and Barriers Activity** 10:20 - 10:50Understanding Utility Regulations |0:50 - ||:20Understanding Solar Financing 11:20 - 11:30 Break 11:30 - 12:00 Installing Solar on Municipal Facilities |2:00 - |2:30|Next Steps for Solar in Region Powered by

Activity: Identifying Benefits

What is the greatest benefit solar can bring to your community? [Blue Card]

Right Now

During Session

After Break

[Results from Survey]

Benefits of Solar Energy

- Local economy growth
- Local jobs
- Energy independence
- Stabilizes price volatility
- Valuable to utilities
- Smart investment

Benefit: Economic Growth

Source: SEIA/GTM Research - 2010 Year in Review Report <u>http://www.seia.org/galleries/pdf/SMI-YIR-</u> 2010-ES.pdf SEIA/GTM Research- 2009 year in Review Supplemental Charts

Benefit: Job Growth

Source: SEIA Estimates (2006-2009), The Solar Foundation's National Solar Jobs Census 2010 (2010), The Solar Foundation's National Solar Jobs Census 2011 (2011-2012).

Benefit: Energy Independence

U.S. Natural Gas Imports

Source: EIA http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=pet&s=mttimus2&f=a

Benefit: Stabilize Energy Prices

Source: NEPOOL

Benefits: Valuable to Utilities

- Avoided Energy Purchases
- Avoided T&D Line Losses
- Avoided Capacity Purchases
- Avoided T&D Investments
- Fossil Fuel Price Impacts
- Backup Power

Benefits: Valuable to Utilities

Value to the utility is **10 to 25 cents** beyond the value of the electricity

Source: http://www.asrc.cestm.albany.edu/perez/2011/solval.pdf

Benefit: Smart Investment for Homes

From NREL:

Solar homes sold

20% faster

and for

17% more

than the equivalent non-solar homes in surveyed California subdivisions

Source: http://www.nrel.gov/docs/fy07osti/38304-01.pdf

Benefit: Smart Investment for Homes

From SunRun:

Source: Tracking the Sun IV, SunRun

Benefit: Smart Investment for Business

Benefit: Smart Investment for Government

Activity: Addressing Barriers

What is the greatest barrier to solar adoption in your community? [Green Card]

Right Now

During Session

After Break

[Results from Survey]

- cost
- aesthetics
- utility
- lack of information/education
- policy environment
- load on existing structures
- home owners associations
- historic preservation
- zoning
- lack of tax incentives
- permitting

Some things you may hear...

Fact: Solar works across the US

Source: National Renewable Energy Laboratory

Installed Capacity of Grid Connected Solar PV

Fact: Solar is a ubiquitous resource

Resource Availability

Source: Perez & Perez. 2009. A fundamental look at energy reserves for the planet.

Fact: Solar is cost competitive

US Average Installed Cost for Behind-the-Meter PV

Tracking the Sun IV: The Installed Cost of Photovoltaics in the US from 1998-2010 (LBNL), SEIA/GTM Research. 2012. Solar Market Insight 2011 Year-in-Review.

Fact: Solar is cost competitive

Tracking the Sun IV: The Installed Cost of Photovoltaics in the US from 1998-2010 (LBNL), SEIA/GTM Research. 2012. Solar Market Insight 2011 Year-in-Review.

Fact: Solar is cost competitive

Fact: Solar is cost competitive

Golden Goal Countries Meeting Golden Goal Countries Missing Golden Goal

Fact: All energy is subsidized

Source: U.S. Energy Information Administration. July 2011. Direct Federal Interventions and Subsidies in Energy in Fiscal Year 2010

Fact: All energy is subsidized

Source: Management Information Services, Inc. October 2011.60 Years of Energy Incentives: Analysis of Federal Expenditures for Energy Development; SEIA, May 1, 2012. Federal Energy Incentives Report.

Barriers Still Exist

Source: NREL (http://ases.conference-services.net/resources/252/2859/pdf/SOLAR2012_0599_full%20paper.pdf) (http://www.nrel.gov/docs/fy12osti/53347.pdf) (http://www.nrel.gov/docs/fy12osti/54689.pdf)

Agenda

- 08:40 09:00Solar 101 09:00 - 09:50Creating a Regulatory Landscape for Solar 09:50 - 10:00Break |0:00 - |0:20|**Benefits and Barriers Activity** 10:20 - 10:50Understanding Utility Regulations |0:50 - ||:20Understanding Solar Financing
- 11:20 11:30 Break
- 11:30 12:00 Installing Solar on Municipal Facilities
- 12:00 12:30 Next Steps for Solar in Region

Utility Market Stages

Source: Solar Electric Power Association

Electric Market Status (2010)

Retail Sales	Investor- Owned	Municipal	Rural Co-ops	TOTAL
Virginia	84.1%	4.4%	11.5%	113M MWh
North Carolina	74.3%	12.1%	13.5%	136 M MWh

# Customers	Investor- Owned	Municipal	Rural Co-ops	TOTAL
Virginia	80.1%	4.2%	15.7%	3,684,290
North Carolina	67.1%	12.1%	20.8%	4,828,539

Prices	Investor- Owned	Municipal	Rural Co-ops	Average
Virginia	8.41 ¢/ kWh	8.73¢/kWh	10.98 ¢/ kWh	9.58¢/kWh
North Carolina	8.11 ¢/ kWh	11.23¢/kWh	11.01¢/kWh	11.05¢/kWh

Average U.S. Retail Electric Rate: 9.83 ¢/kWh

Source: US Energy Information Administration

Renewable Portfolio Standard

www.dsireusa.org / August 2012

SunShot

U.S. Department of Energy

Virginia Renewable Portfolio Goal

North Carolina: Renewable Portfolio Standard

Retail Electricity Sales IOUs

Renewable Energy

Any electricity source

Retail Electricity Sales Munis and Co-ops

> Renewable Energy

Any electricity source

North Carolina: Renewable Portfolio Standard

Retail Electricity Sales Munis and Co-ops Solar Carve-out Renewable Energy Any electricity source

Renewable Portfolio Standard

Net metering allows customers to export power to the grid during times of excess generation, and receive credits that can be applied to later electricity usage

Net Metering: Overview

Morning

Net Metering: Overview

Net Metering: Overview

Solar covers 100% of the customer's load, even at night!

Net Metering: State Policies

Note: Numbers indicate individual system capacity limit in kilowatts. Some limits vary by customer type, technology and/or application. Other limits might also apply. This map generally does not address statutory changes until administrative rules have been adopted to implement such changes.

Net Metering: Market Share

More than 93% of distributed PV Installations are net-metered

Source: IREC (http://www.irecusa.org/wp-content/uploads/IRECSolarMarketTrends-2012-web.pdf)

Net Metering: Resources

Provides a "report card" for state policy on net metering and interconnection

http://freeingthegrid.org/

Net Metering: Virginia

Eligible Renewable/Other Technologies:	Solar Thermal Electric, Photovoltaics, Wind, Biomass, Hydroelectric, Geothermal Electric, Municipal Solid Waste, Small Hydroelectric, Tidal Energy, Wave Energy
Applicable Sectors:	Commercial, Residential, Nonprofit, Schools, Local Government, State Government, Institutional
Applicable Utilities:	Investor-owned utilities, electric co-ops
System Capacity Limit:	500 kW for non-residential (may be higher if a utility chooses); and 10 kW (20 kW with standby charges) for residential
Aggregate Capacity Limit:	1% of utility's adjusted Virginia peak-load forecast for the previous year
Net Excess Generation:	Credited to customer's next bill at retail rate. After 12-month cycle, customer may opt to roll over credit indefinitely or to receive payment at avoided-cost rate
REC Ownership:	Customer owns RECs
Meter Aggregation:	Not addressed

Net Metering: Virginia

Eligible Renewable/Other Technologies:	Solar Thermal Electric, Photovoltaics, Wind, Biomass, Hydroelectric, Geothermal Electric, Municipal Solid Waste, Small Hydroelectric, Tidal Energy, Wave Energy
Applicable Sectors:	Commercial, Residential, Nonprofit, Schools, Local Government, State Government, Institutional
Applicable Utilities:	Investor-owned utilities, electric co-ops
System Capacity Limit:	500 kW for non-residential (may be higher if a utility chooses); and 10 kW (20 kW with standby charges) for residential
Aggregate Capacity Limit:	1% of utility's adjusted Virginia peak-load forecast for the previous year
Aggregate Capacity Limit: Net Excess Generation:	1% of utility's adjusted Virginia peak-load forecast for the previous year Credited to customer's next bill at retail rate. After 12-month cycle, customer may opt to roll over credit indefinitely or to receive payment at avoided-cost rate
Aggregate Capacity Limit: Net Excess Generation: REC Ownership:	1% of utility's adjusted Virginia peak-load forecast for the previous year Credited to customer's next bill at retail rate. After 12-month cycle, customer may opt to roll over credit indefinitely or to receive payment at avoided-cost rate Customer owns RECs

Net Metering: Virtual

No direct connection necessary

Net Metering: Meter Aggregation

Aggregation of some from authorized by state

But...It's complicated

- Ownership requirements
- Contiguous vs. non-contiguous properties
- Multiple customers
- Multiple generators
- Modified system/aggregate system size limits

- Rollover rates
- Distance limitations
- Number of accounts
- How to address accounts on different tariffs

Net Metering: Virginia

RECOMMENDATIONS:

- Remove system size limitations to allow customers to meet all on-site energy needs
- Increase limit on overall enrollment to at least 5% of utility's peak capacity

Eligible Renewable/Other Technologies:	Solar Thermal Electric, Photovoltaics, Wind, Biomass, Hydroelectric, Geothermal Electric, Municipal Solid Waste, Small Hydroelectric, Tidal Energy, Wave Energy
Applicable Sectors:	Commercial, Residential, Nonprofit, Schools, Local Government, State Government, Institutional
Applicable Utilities:	Investor-owned utilities, electric co-ops
System Capacity Limit:	500 kW for non-residential (may be higher if a utility chooses); and 10 kW (20 kW with standby charges) for residential
Aggregate Capacity Limit:	1% of utility's adjusted Virginia peak-load forecast for the previous year
Net Excess Generation:	Credited to customer's next bill at retail rate. After 12-month cycle, customer may opt to roll over credit indefinitely or to receive payment at avoided-cost rate
REC Ownership:	Customer owns RECs
Meter Aggregation:	Not addressed

Net Metering: North Carolina

Eligible Renewable/Other Technologies:	Photovoltaics, Landfill Gas, Wind, Biomass, Hydroelectric, CHP/Cogeneration, Hydrogen, Anaerobic Digestion, Small Hydroelectric, Tidal Energy, Wave Energy, Fuel Cells using Renewable Fuels
Applicable Sectors:	Commercial, Industrial, Residential, Nonprofit, Schools, Local Government, State Government, Tribal Government, Fed. Government, Agricultural, Institutional
Applicable Utilities:	Investor-owned utilities
System Capacity Limit:	1 MW
Aggregate Capacity Limit:	No limit specified
Net Excess Generation:	Credited to customer's next bill at retail rate; granted to utility at beginning of summer billing season
REC Ownership:	Utility owns RECs (unless customer chooses to net meter under a time-of-use tariff)
Meter Aggregation:	Not addressed

Source: Freeing the Grid

Net Metering: North Carolina

Net Metering				
F 200 7	F 200 8	D 200 9	D 201 0	D 2011

Source: Freeing the Grid

Eligible Renewable/Other Technologies:	Photovoltaics, Landfill Gas, Wind, Biomass, Hydroelectric, CHP/Cogeneration, Hydrogen, Anaerobic Digestion, Small Hydroelectric, Tidal Energy, Wave Energy, Fuel Cells using Renewable Fuels
Applicable Sectors:	Commercial, Industrial, Residential, Nonprofit, Schools, Local Government, State Government, Tribal Government, Fed. Government, Agricultural, Institutional
Applicable Utilities:	Investor-owned utilities
System Capacity Limit:	1 MW
System Capacity Limit: Aggregate Capacity Limit:	1 MW No limit specified
System Capacity Limit: Aggregate Capacity Limit: Net Excess Generation:	1 MW No limit specified Credited to customer's next bill at retail rate; granted to utility at beginning of summer billing season
System Capacity Limit: Aggregate Capacity Limit: Net Excess Generation: REC Ownership:	1 MW No limit specified Credited to customer's next bill at retail rate; granted to utility at beginning of summer billing season Utility owns RECs (unless customer chooses to net meter under a time-of- use tariff)

Net Metering: North Carolina

RECOMMENDATIONS:

- Remove system size limitations to allow customers to meet all on-site energy needs
- Adopt safe harbor language to protect customer-sited generators from extra and/or unanticipated fees
- Extend net metering requirements to all utilities (i.e., munis and co-ops)
- Remove limitations on REC ownership

Eligible Renewable/Other Technologies:	Photovoltaics, Landfill Gas, Wind, Biomass, Hydroelectric, CHP/Cogeneration, Hydrogen, Anaerobic Digestion, Small Hydroelectric, Tidal Energy, Wave Energy, Fuel Cells using Renewable Fuels
Applicable Sectors:	Commercial, Industrial, Residential, Nonprofit, Schools, Local Government, State Government, Tribal Government, Fed. Government, Agricultural, Institutional
Applicable Utilities:	Investor-owned utilities
System Capacity Limit:	1 MW
Aggregate Capacity Limit:	No limit specified
Net Excess Generation:	Credited to customer's next bill at retail rate; granted to utility at beginning of summer billing season
REC Ownership:	Utility owns RECs (unless customer chooses to net meter under a time-of-use tariff)
Meter Aggregation:	Not addressed

Net Metering: Resources

Resource Interstate Renewable Energy Council

IREC developed its model rules in an effort to capture best practices in state net metering policies.

www.irecusa.org

Interconnection

5,000+ utilities

with unique interconnection procedures

Source: NREL (http://www.nrel.gov/docs/fy12osti/54689.pdf

Interconnection: Background

- **2000:** NREL finds that interconnection is a significant barrier to customer sited DG
- **2005:** Congress requires state regulator authorities to consider an interconnection standard (IEEE 1547)
- 2012: 43 States & DC have adopted interconnection standards
 - CA Rule 21 MADRI Procedures
 - FERC SGIP IREC Procedures

Interconnection: Best Practices

- I. Use standard forms and agreements
- 2. Implement expedited process
- Implement simplified procedure for small solar arrays

Interconnection: State Policies

<u>Notes</u>: Numbers indicate system capacity limit in kW. Some state limits vary by customer type (e.g., residential versus non-residential). "No limit" means that there is no stated maximum size for individual systems. Other limits may apply. Generally, state interconnection standards apply only to investor-owned utilities.

Interconnection: Virginia

Recommendations:

- Prohibit requirements for redundant external disconnect switch
- Prohibit requirements for additional insurance

Eligible Renewable/Other Technologies:	Solar Thermal Electric, Photovoltaics, Wind, Biomass, Hydroelectric, Geothermal Electric, Municipal Solid Waste, Tidal Energy, Wave Energy
Applicable Sectors:	Commercial, Industrial, Residential, Nonprofit, Schools, Local Government, State Government, Fed. Government
Applicable Utilities:	All utilities
System Capacity Limit:	20 MW
Standard Agreement:	Varies by system size
Insurance Requirements:	Vary by system size and/or type; levels established by commission
External Disconnect Switch:	Utility's discretion
Net Metering Required:	No, separate interconnection procedures exist for net-metered

Interconnection: North Carolina

Recommendations:

- Prohibit requirements for redundant external disconnect switch
- Prohibit requirements for additional insurance
- Extend interconnection procedures to all utilities (i.e., munis and co-ops)

Eligible Renewable/Other Technologies:	Solar Thermal Electric, Photovoltaics, Landfill Gas, Wind, Biomass, Fuel Cells, Municipal Solid Waste, CHP/Cogeneration, Anaerobic Digestion, Small Hydroelectric, Microturbines, Other Distributed Generation Technologies
Applicable Sectors:	Commercial, Industrial, Residential, Nonprofit, Schools, Local Government, State Government, Fed. Government, Agricultural, Institutional
Applicable Utilities:	Investor-owned utilities
System Capacity Limit:	No limit specified
Standard Agreement:	Yes
Insurance Requirements:	Vary by system size and/or type; levels established by commission
External Disconnect Switch:	Not required for inverter-based systems up to 10 kW (unless the utility pays for it); utility's discretion for all other systems
Net Metering Required:	No

Interconnection: Resources

Resource Interstate Renewable Energy Council

IREC developed model interconnection procedures in an effort to capture emerging best practices in this vital area.

www.irecusa.org

Utility Spotlight: Dominion Energy

Proposed Programs:

- Community Solar Power Program*
 - Two phase program that would seek to install up to 30 MWs of utility-owned solar within the utility's service territory (at 30-50 sites).
 - Projects will be sited at a minimum of four community settings: such as local government buildings, schools, community associations, neighborhood associations or nonprofit organizations.
- Customer Solar Power Rate
 - The utility is seeking permission to purchase solar-generated electricity from up to 3 MWs of residential and small commercial customer projects at 15 ¢/kWh for a five-year demonstration period.

https://www.dom.com/about/stations/renewable/solar/index.jsp

*Program is not a community solar as traditionally defined. There is no customer participation component.

Agenda

08:40 - 09:00Solar 101 09:00 - 09:50Creating a Regulatory Landscape for Solar 09:50 - 10:00Break |0:00 - |0:20|**Benefits and Barriers Activity** 10:20 - 10:50Understanding Utility Regulations |0:50 - ||:20Understanding Solar Financing 11:20 - 11:30 Break 11:30 - 12:00 Installing Solar on Municipal Facilities |2:00 - |2:30|Next Steps for Solar in Region

Understanding Solar Financing

Understanding Solar Financing

RPS: Virginia Overview

- Voluntary Renewable Energy Portfolio Goal
- I 5% of 2007 sales by 2025
- No solar carve-out

Virginia State Corporation Commission (SCC) allows participating utilities to recover program costs and offers a performance incentive (in the form of an increased rate of return) for each goal attained.

Source: DSIRE Solar (http://www.dsireusa.org/solar/incentives/incentive.cfm?Incentive_Code=VA10R&re=1&ee=1)

Solar Renewable Energy Credits (SRECs)

Three Requirements: RPS solar carve out

Unbundled, tradeable credits

Penalty for non-compliance – solar alternative compliance payment (SACP)

SRECs in Virginia

As there is no solar carve-out, Virginia lacks a viable SREC market.

However, system owners may be eligible to participate in the PA SREC market.

RPS: North Carolina Overview

- Renewable Energy and Energy Efficiency Portfolio Standard (REPS)
- IOUs: I2.5% of 2020 retail electricity sales from "eligible energy resources" in 2021
- Solar carve-out: 0.2% by 2018
- Munis/Coops: 10% of 2017 sales by 2018
 - Can use Demand Side Management, Energy Efficiency, and Large Hydropower

Source: DSIRE Solar (http://www.dsireusa.org/solar/incentives/incentive.cfm?Incentive_Code=VA10R&re=1&ee=1)

SRECs in North Carolina

While an SREC program exists on paper, this market has been slow to develop.

Lack of an SACP

Shortage of Buyers

Out-of-State Participation

State PV Financial Incentives

Virginia				North Carolina		
-	State Rebates	-		-	State Rebates	-
-	State Grants	-		-	State Grants	-
1	State Loans	Several programs available through the Virginia		1	State Loans	Local Option for revolving loan programs
		Resources Authority		-	PACE Financing	-
-	PACE Financing	-		1	Prod. Incentives	Statewide (NC Green Power) and Utility (Duke, Progress, TVA)
1	Prod. Incentives	Utilities (TVA)				
-	Corp. Tax Credits	-		1	Corp. Tax Credits	35% of system cost; max. \$10,500 for solar PV, \$1,400 for SWH
-	Pers. Tax Credits	-		1	Pers. Tax Credits	35% of system cost; max. \$10,500 for solar PV, \$1,400
1	Prop. Tax Incentives	Local Option; Commercial, Industrial, Residential				for SWH
				1	Prop. Tax Incentives	For both PV and SWH

What is a Feed in Tariff?

Components of a Feed in Tariff

- Fixed price payment
- Long term contract
- Guaranteed power purchase
- Price based on generation cost

TVA Performance Based Incentives

Generation Partners Program

Eligible Technologies	Photovoltaics, Landfill Gas, Wind, Biomass, Small Hydroelectric
Applicable Sectors	Commercial, Residential, Nonprofit, Local Government, State Government, Federal Government
Amount	\$1,000 enrollment incentive + \$0.12/kWh on top of retail electricity rate (for qualifying PV systems)
Term	10 years*
Eligible System Sizes	0.5 kW - 50 kW

* TVA is in the process of transitioning the Generation Partners Program to the "Green Power Providers" program, which will retain many of the essential features of the current program. Notable changes in the new program include the exclusion of landfill gas as an eligible technology and extension of the contract term to 20 years (with the generation premium in effect for only the first 10 years of the contract). The new program is expected to be finalized in October 2012.

Source: DSIRE Solar (http://www.dsireusa.org/solar/incentives/incentive.cfm?Incentive_Code=VA05F&re=0&ee=0); TVA (http://www.tva.com/greenpowerswitch/partners/pdf/green_power_providers_fact_sheet.pdf)

TVA Performance Based Incentives

Mid-Sized Renewable Standard Offer Program

Eligible Technologies	Photovoltaics, Landfill Gas, Wind, Biomass, Other Clean Technologies, Anaerobic Digestion, Biodiesel
Applicable Sectors	Commercial, Nonprofit, Schools, Local Government, Construction, State Government, Tribal Government, Federal Government, Agricultural, Institutional, Retail Supplier, Systems Integrator
Amount	Varies according to seasonal and time-of-use (TOU) pricing set when contracts are executed. Prices ranges between \$0.035 - \$0.16/kWh, with an average price of \$0.055/kWh
Term	Up to 20 years, with 3% annual base rate escalator
Eligible System Sizes	50 kW – 20MW

Source: DSIRE Solar

(http://www.dsireusa.org/solar/incentives/incentive.cfm?Incentive_Code=VA41F&re=0&ee=0)

Understanding Solar Financing

Third Party Ownership

3rd-Party Solar PV Power Purchase Agreements (PPAs)

Authorized by state or otherwise currently in use, at least in certain jurisdictions within in the state Apparently disallowed by state or otherwise restricted by legal barriers

Status unclear or unknown

Note: This map is intended to serve as an unofficial guide; it does not constitute legal advice. Seek qualified legal expertise before making binding financial decisions related to a 3rd-party PPA. See following slides for additional important information and authority references.

Group Purchasing

- Many people come together to purchase solar equipment and installation services in bulk
- Economies of scale = lower price per watt

Property Assessed Clean Energy

City creates type of land-secured financing district or similar legal mechanism (a special assessment district) Property owners voluntarily signup for financing and make energy improvements Proceeds from revenue bond or other financing provided to property owner to pay for energy project Property owner pays assessment through property tax bill (up to 20 years)

Understanding Solar Financing

Financing: Attractive Loan Options

- Local governments and utilities can develop loan programs:
 - direct loans (e.g., revolving loan fund)
 - loans through private lenders (e.g., credit enhancement)
- Options in Virginia
 - Virginia Resources Authority offers several programs to finance local government energy projects
- Options in North Carolina
 - Allows local governments to establish and make loans from a revolving loan fund, with interest rates capped at 8% and terms of up to 20 years
- The goal is to increase access to financing or induce additional improvements

Community Shared Solar

Seattle City Light's Jefferson Park Project

Property & Sales Tax Exemptions

- Property tax exemptions in North Carolina
 - Active Solar Heating and Cooling
 - May not be assessed at a higher value than conventional systems
 - Solar Electric Systems
 - Exempts 80% of appraised value from property tax
- Local option for property tax in Virginia
- 4.00% state sales tax in Virginia, plus local (1-1.5%)
- 6.75% state sales in North Carolina, plus local (2-3%)

Agenda

- 08:40 09:00 Solar 101
- 09:00 09:50 Creating a Regulatory Landscape for Solar
- 09:50 10:00 Break
- 10:00 10:20 Benefits and Barriers Activity
- 10:20 10:50 Understanding Utility Regulations
- 10:50 11:20 Understanding Solar Financing
- 11:20 11:30 E
 - Break
- 11:30 12:00
- 12:00 12:30
- Installing Solar on Municipal Facilities
- Next Steps for Solar in Region

Agenda

- 08:40 09:00 Solar 101
- 09:00 09:50 Creating a Regulatory Landscape for Solar
- 09:50 10:00 Break
- 10:00 10:20 Benefits and Barriers Activity
- 10:20 10:50 Understanding Utility Regulations
- 10:50 11:20 Understanding Solar Financing
- 11:20 11:30 Break
- 11:30 12:00
- 12:00 12:30
- Installing Solar on Municipal Facilities Next Steps for Solar in Region

Option 1: Direct Ownership

Decide on Ownership Structure

Option 2: Third Party Ownership

Ownership Structure Decision

- Are you a taxpaying entity?
- Do you have access to financing or available cash?
- How does this compare to other opportunities?
- Can you enter into long-term contracts?
- Do you want to own the system?
- Do you have a municipal utility?
- Do you need the RECs for compliance?

Step I: Location Selection

- Who is using the energy?
- Where is the energy being used?
- What is the user's energy load?
- What is the user's energy cost?

Step I: Location Selection

Rooftop

Step 2: Site Assessment

- Solar Access Rights
- Interconnection
- Wind loading
- Roof age, type, & warranty
- Electrical configuration
- Slope, Shading and orientation

Step 2: Site Assessment

- Usable acreage
- Slope
- Distance to transmission lines
- Distance to graded roads
- Conservation areas

Step 3: Finance Project

- Direct purchase
- Grant financed
- ESCO/performance contracting
- Loans
- Bonds

Step 4: Installer Procurement

EPC = Engineer, Procure, Construct

- Designs the project
- Completes necessary permitting requirements
- Works with the utility to file for interconnection
- Assists in procuring components
- Applies for incentives
- Manages project construction

Direct Ownership

Pros

- Low cost electricity
- REC revenue
- Maximize underutilized spaces

Cons

- Large upfront cost
- Long term management
- Can't take all incentives
- Development risk
- Performance risk

Step 2: Developer Procurement

Avoid Five Common Pitfalls:

- RFP/RFQ specifications are too restrictive or too unstructured
- Competing measures of system efficiency
- Finding sufficient number of qualified bidders
- Lack of effective O&M program
- Lack of strong monitoring program

Step 2: Developer Procurement

In Santa Clara County, CA, nine municipalities collaboratively bid out 47 sites. Benefits include:

50% savings in administrative costs

0-5% reduction in energy cost

Source: NREL Webinar "Procuring and Implementing Solar Projects on Public Buildings: How to Avoid Common Pitfalls" December 8, 2010

Step 3: Contract Negotiation

Negotiation points:

- Fixed or floating electricity price
- Price escalator
- Contract term length
- Property taxes
- Liability
- Performance guarantee
- Regulatory risk

Third Party Ownership

Pros

- No upfront cost
- No O&M costs
- Low risk
- Predictable payments

Cons

- Market electricity price risk
- Limited opportunity in VA
- Don't keep RECs

Factors PPA Providers Look For

- States that allow PPA providers to operate without being regulated as utility
- State financial incentives tax credit or rebate
- SREC market
- Good net metering and interconnection
- PPA providers allowed to net meter

Property Leases

- Site owner <u>leases site</u> to third party solar developer
- Typical lease runs 20 years or longer
- Leasing company owns the equipment and energy produced, but pays site owner for use of the site (roof, land)
- Las Cruces, NM leased 240 acres to SunEdison
 = \$2.3 million for the city

14th Street Parking Deck Type of Site: Public Location: Richmond, VA Size of PV system: 188.44 kW http://live.deckmonitoring.com/?id=14th_street Photo credit: Urban Grid

Children's Museum of Richmond Type of Site: Public Location: Richmond, VA Size of PV system: 14.4 kW Photo credit: Urban Grid

Agenda

08:40 - 09:00Solar 101 09:00 - 09:50Creating a Regulatory Landscape for Solar 09:50 - 10:00Break 10:00 - 10:20**Benefits and Barriers Activity** 10:20 - 10:50Understanding Utility Regulations 10:50 - 11:20Understanding Solar Financing ||:20 - ||:30Break 11:30 - 12:00 Installing Solar on Municipal Facilities |2:00 - |2:30|Next Steps for Solar in Region

Discussion What are some tools from this workshop that you can take back to your community?

Activity: Next Steps

What do you pledge to do when you leave today's workshop? [Orange Card]

Becky Campbell

Solar Electric Power Association

Philip Haddix

The Solar Foundation

bcampbell@solarelectricpower.org 202.559.2030

phaddix@solarfound.org 202.469.3743