

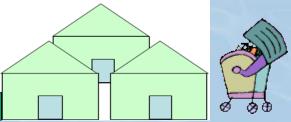
Renewable Energy In the Community

Johnson Controls, Inc Global Headquarters

William Guiney

Director Solar Thermal Business 507 E. Michigan St. M-98 Milwaukee, WI 53202 414-524-4860 william.t.guiney@jci.com

Change the way buildings use energy and water 40% of all energy used

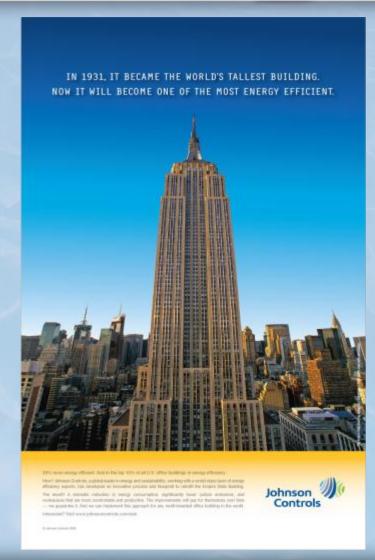

12% of freshwater 88% potable water

48% of Atmospheric emissions

40% of municipal solid waste

40% of all wood, steel and other raw materials

US uses 5 billion gallons of water to flush toilets - daily


- 80% percent of Americans now live in cities. By 2050, 90% will.
- 75% of US built environment will be new or renovated in the next 30-years

- Refurbishing windows
- Reflective surface behind the radiators
- Energy management control
- New or improved mechanical systems
- Web-based tenant energy system
- 38% energy reduction
- \$4.4 million per year savings

Solar strengthens communities

For many years we have committed to help foster the growth, development, of solar technology in communities all over the world

Solar technology is not only beneficial for reducing the amount of greenhouse gases, but it also helps strengthen our communities in numerous ways.

#1 Creating Jobs

- Solar energy creates jobs in the community
 - construction, maintenance, engineering

#2 Educating Youth, Adults, and Professionals

• A number of solar energy education programs have been constructed to train educators and students at community and technical colleges.

#3 Decreases Dependence on Imported Energy

Renewable Energy should be home grown

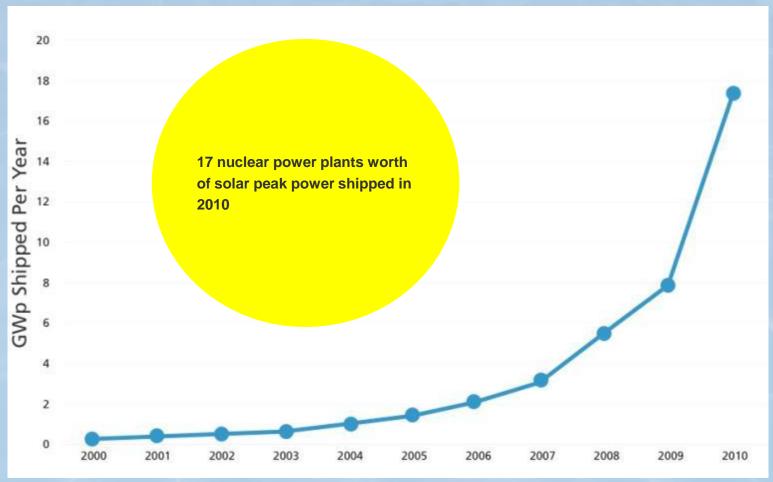
#4 Encourages a Paradigm Shift in Thinking

• By installing solar systems in schools, kids grow up thinking about water being heated and the lights illuminated as a result of the solar panels on their roof.

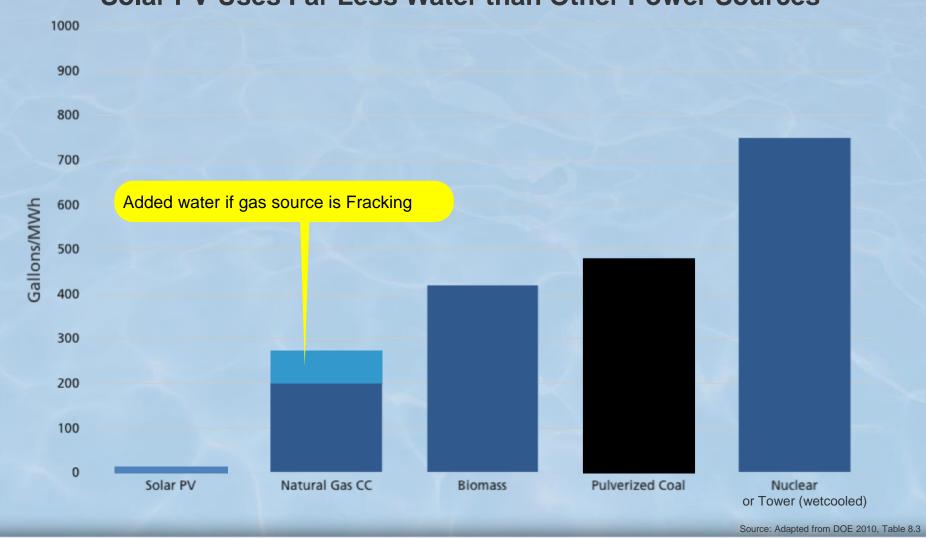
#5 Reduces Carbon Emissions and Water Use

• About 40% of our water consumption is for cooling power plants as they generate electricity. 40% of electricity use is needed to produce, pump, and clean water.

Solar Creates Jobs


Sources: Kammen, David M et al, 2004, Report of the Renewable and Appropriate Energy Lab, Putting Renewables to Work: How Many Jobs Can the Clean Energy Industry Create?, Energy Resources Group, Goldman School of Public Policy, University of California, Berkeley. Wei, Max et al, 2010, Putting Renewables to Work: How Many Jobs Can the Clean Energy Industry Create?, Energy Resources Group, Goldman School of Public Policy, University of California, Berkeley, in Energy Policy, vol 38, issue 2, February 2010.

Solar Growing Rapidly, Averaging 65% Compound Annual Growth Rate for the Past 5 Years


Source: PV Industry Growth Data from Paula Mints, Principal Analyst, Solar Services Program, Navigant

5757 Green Bay Avenue

Solar Solutions: Two Options for Communities

- Solar Thermal
 - Heat Energy
 - Displaces:
 - Natural Gas
 - Electricity
 - LPG
- Solar Photovoltaic
 - Photo (light)- Voltaic (electric)
 - Solar Electricity
 - Displaces Utility Grid Delivered Power
 - Solar Lighting
 - Stand Alone Remote Generator

Solar Water Heating

Solar Thermal system supplies hot water to the cafeteria, fitness center and lavatories

Solar Storage and Heat Exchanger

Solar Circulation Pumps

Expansion Tank and Glycol Make-up

BTU Meter Quantifies the Energy Production

Solar Thermal Technologies

High Temperature

Electric Power Generation
Air-Conditioning
Industrial Process Heat

Mid Temperature

Hot Water Air-Conditioning

Low Temperature Pool & Spa

Hot Water Demand

Building Type	Administrative	Elementary School	Middle School	High School w/showers	Dormitory	Dining Hall	Fire Station
Demand	1 gal./ worker/day	0.6 gal./ student/day	1.0 gal./ student/day	1.8 gal./ student/day	8-10 gal./ student or senior per day	2.4 gal./meal served	20-30 gal./day/ firefighter
Building Type	Senior Center	Police Station	Corrections	Animal Care	Military Barracks	Laundry	Hospital
Demand	2 gal./person/ day w/o meals, 6 gal./person/ day w/ meals	8-10 gal./ person/day	14 gal./person/day	1 gal./animal/ Day	8-10 gal./troop/ day	45 gal./load	52 gal./ bed/day

SOLAR THERMAL is DESIGNED for 50-80% of the ACTUAL LOAD

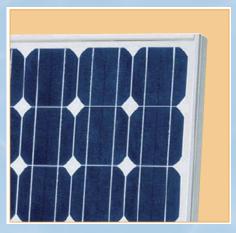
Plug and Play with Pre-Engineered Designs

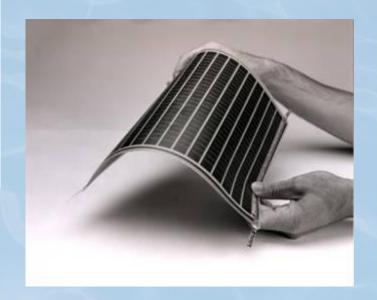
PROPAC®

MASS STORAGE SYSTEMS

Engine Company 26 Chicago, IL

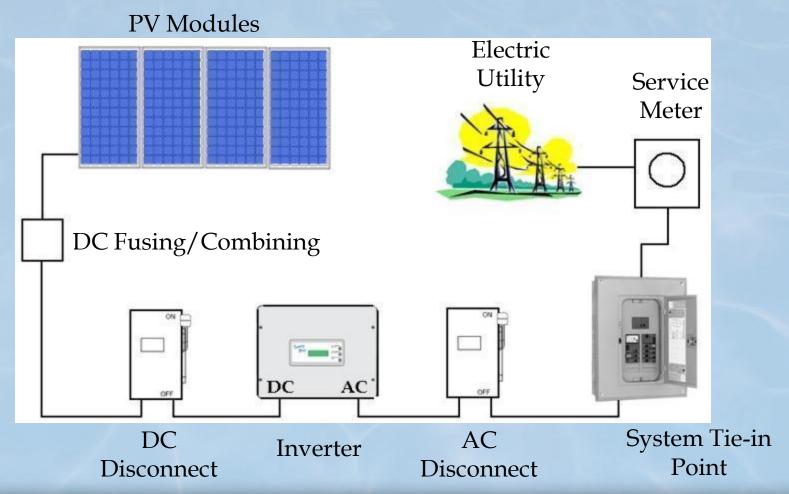
- 1 ft² of collector area for every 1 to 2 gallons of hot water/day
- \$120-\$150/ft² of Collector / Panel Area
 installed


Rules of Thumb - Solar Thermal


Different Types of PV Modules

Single crystal or Monocrystalline

Polycrystalline or Multicrystalline


Thin Film, Amorphous

U.S. DOE

Basic Grid-Connected PV System Components

PVWATTS: AC Energy and Cost Savings

Page 1 of 2

Determines the actual performance at the customers site.

Indianapolis, IN
Each 5.25kW block =
6635 kWh/year

Atlanta, GA 7235 kWh/yr Miami, FL 7220 kWh/yr Louisville, KY 6635 kWh/yr Milwaukee, WI 6616 kWh/yr Lexington, KY 6460 kWh/yr

Station Identification					
City:	Indianapolis				
State:	Indiana				
Latitude:	39.73° N				
Longitude:	86.28° W				
Elevation:	246 m				
PV System Specification	s				
DC Rating:	5.2 kW				
DC to ACDerate Factor.	0.790				
AC Rating:	4.1 kW				
Апау Туре:	Fixed Tilt				
Array Tilt:	35.0°				
Array Azimuth:	180.0°				
Energy Specifications					
Cost of Electricity:	7.3 ¢/kWh				

Results						
Month	Solar Radiation (kWh/m²/day)	AC Energy (kWh)	Energy Value (\$)			
1	3.09	413	30.15			
2	4.06	489	35.70			
3	4.44	560	40.88			
4	5.22	619	45.19			
5	5.88	700	51.10			
6	6.03	667	48.69			
7	6.09	691	50.44			
8	5.78	667	48.69			
9	5.21	593	43.29			
10	4.63	567	41.39			
11	3.00	367	26.79			
12	2.31	303	22.12			
Year	4.65	6635	484.36			

Area

30° tilt ~ 250 ft² roof/kW 10° tilt ~ 175 ft² roof/kW sloped roof ~100 ft² roof/kW

Weight

1 – 2 lb/ ft² Attached 4 - 7 lb/ ft² Ballasted

Performance 5 kW system

WI ~ 6,000kWh TX ~ 6,750 kWh AZ ~ 8,000kWh

Cost

\$5 to \$6 /watt installed

Rules of Thumb Solar PV

Tampa Housing Authority

Building Integrated PV (BIPV)

Replace the Roof & Get a Solar System

20-year Warranty

for

Roof and the Solar System

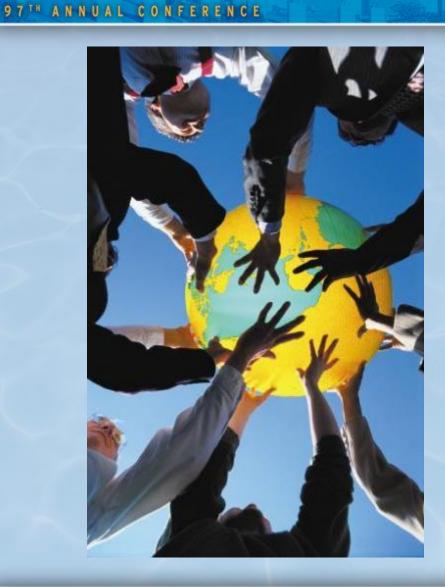
Johnson Controls, Inc Corporate Headquarters in Glendale, WI

Solar Integrated Roof System

Laminate modules going on

Database of State Incentives for Renewables & Efficiency

What Incentives are Available for your Project?



Thank you