

Solar Electric Energy for your Stadium or Arena

A Guide to Understanding the Opportunities of On-Site Photovoltaic Solar Power Generation

July 26, 2010

About NRDC

The Natural Resources Defense Council is an international nonprofit environmental organization with more than 1.3 million members and online activists. Since 1970, our lawyers, scientists, and other environmental specialists have worked to protect the world's natural resources, public health, and the environment. NRDC has offices in New York City, Washington, D.C., Los Angeles, San Francisco, Chicago, Livingston, Montana, and Beijing. Visit us at www.nrdc.org.

About the Bonneville Environmental Foundation (BEF)

Bonneville Environmental Foundation (BEF) is an entrepreneurial nonprofit that is creating a more sustainable future by investing now in clean energy and fresh water. When customers purchase BEF's independently certified carbon offsets and renewable energy certificates, they support the reduction of greenhouse gas emissions and the development of new renewable energy facilities. Additionally, their purchase supports long-term watershed restoration and renewable energy education for students and communities nationwide because BEF reinvests its net revenue to fund its Model Watershed and Solar 4R Schools programs. Since its inception in Portland, Ore. in 1998, BEF has been a pioneer in helping people and companies become better stewards of the environment. For more information, see http://www.b-e-f.org.

Authors

Emily Barrett, Bonneville Environmental Foundation Patrick Nye, Bonneville Environmental Foundation Allen Hershkowitz, Natural Resources Defense Council Darby Hoover, Natural Resources Defense Council Jessica Esposito, Natural Resources Defense Council

Contact

Bonneville Environmental Foundation 240 SW 1st Ave | Portland, Oregon 97204 | 503.248.1905 Patrick Nye, pnye@b-e-f.org | Emily Barrett, ebarrett@b-e-f.org

Natural Resources Defense Council 40 West 20th Street | New York, NY 10011 Pierre Bull, Allen Hershkowitz, Darby Hoover, Jessica Esposito greensports@nrdc.org

Executive Summary

• There are many ways to lower the initial capital costs of installing solar.

We know you've heard solar is expensive, but there are many ways to lower initial capital costs. Federal and State solar incentives are making solar installation more affordable, and some utilities and local governments have additional grant and rebate programs that could also help to subsidize the project. It may be possible to enter into a power purchase agreement so that your facility would host a solar array that was owned by a third party. However you decide to approach the project and the subsequent financing, this is the right time to be considering installing solar. With incentives currently making it more affordable and the movement still fresh enough to provide valuable leadership opportunities, there may never be a better time to act.

• An Energy Audit is the first step.

Before considering the installation of a solar array, it is worth looking at the way that your facility already uses energy. Understanding the energy efficiency of your building is the first step in any energy project. Therefore, it makes sense to start any project by getting an energy audit. These are often provided for free or at low cost by your local energy provider. An energy audit will provide a better sense of your facility's current energy use and what can be done to reduce energy costs. For your investment, reducing energy consumption will provide the greatest returns, and the financial returns from saving energy can be used to help fund your solar project.

· Construction of the solar array can likely be completed in the off-season.

While the design, permitting and installation schedules will vary greatly, the actual construction of the solar array can be accomplished with relative efficiency and could therefore likely be completed in the off-season, thereby creating minimal disruption to the functioning of the facility.

• The Federal government offers tax incentives to install PV systems.

As an incentive to install PV systems, the federal government offers a Business Energy Investment Tax Credit to the commercial and industrial sectors and to utilities. This credit covers 30% of the cost of the PV system, including labor and installation costs. There is no maximum for the federal incentive. It is scheduled to remain at the current 30% until December 31, 2016, when it will be reduced to 10% of system costs.

Power Purchase Agreements allow solar systems to be owned and maintained by third party.

A power purchase agreement (PPA) allows your facility to host a solar installation and reap almost all of the benefits of solar without the initial cost outlay. In such an arrangement, the solar array is owned, operated and maintained by a third party, which then sells the energy back to your facility. The array, located on or near your property, still provides a powerful symbol of environmental commitment, and through the PPA, you are guaranteed a predictable energy price that may be less subject to future energy price increases. A PPA is a common arrangement for commercial applications of solar and may be well-suited to professional sports clubs who want to show their commitment to renewable energy but are not in a position to finance the installation of a photovoltaic system themselves.

In addition to solar installations, there are a number of ways to support green energy.

The world of "green energy" is a sometimes complex one and can extend well beyond the simplicity of installing solar panels on the roof and tying them into the grid-system. Of course, that is a perfect example of green energy, but it often doesn't end there. There are three ways of obtaining the right to claim that your building is green-powered without owning a renewable energy system. One is to purchase green power from a utility. In such an instance, you will pay a premium above the usual cost of energy and thereby support the renewable systems that source the utility's green energy. A second method of purchasing claims and thereby supporting green energy is by buying renewable energy certificates (RECs). The last method of supporting renewable energy without an on-site system is through the purchasing of carbon offsets. Offsets are not exactly the same as renewable energy certificates. While RECs represent a bundled quantity of green energy (one REC is the equivalent of 1 MWh), offsets represent a bundled quantity of avoided carbon dioxide (one carbon offset is the equivalent of 1 metric ton of avoided greenhouse gases).

TABLE OF CONTENTS

WHY GO SOLAR?
THE PROCESS 2
ENERGY EFFICIENCY AND THE ENERGY AUDIT
WHO HAS ALREADY GONE SOLAR?
THE INSTALLATION TIMELINE
SOLAR ENERGY AND LEED CERTIFICATION 4
CONSIDERING THE COST OF SOLAR
FACTORS THAT IMPACT SYSTEM PRODUCTIVITY
ESTIMATING COSTS 5
PHOTOVOLTAIC INSTALLATION INCENTIVES 6
FUNDING IDEAS AND STRATEGIES 6
A POWER PURCHASE AGREEMENT 7
RELEASING A REQUEST FOR PROPOSALS 8
UNDERSTANDING GREEN ENERGY
RENEWABLE ENERGY CERTIFICATES 9
GRID INTERCONNECTION AND NET METERING 9
SYSTEM IDEAS
SAMPLE PV SYSTEM PROFILES
APPENDIX A – GLOSSARY
APPENDIX B – PHYSICAL DIMENSIONS OF PV MODULES
APPENDIX C – STATE INCENTIVES
APPENDIX D – LOCATION SPECIFIC ESTIMATES
INTERNET RESOURCES

***** SOLAR ENERGY **BECOMES MORE COST-EFFECTIVE** OVER TIME, AND SINCE IT IS PRODUCED **DURING THE DAY** WHEN ENERGY PRICES ARE LIKELY TO BE AT A PREMIUM, SOLAR ELECTRIC **PRODUCTION CAN REDUCE YOUR** CONSUMPTION **OF HIGH PRICED** ENERGY.

Why Go Solar?

There are many reasons that make this a good time to consider installing a solar energy system.

Reducing Your Environmental Impact

We are facing a planetary emergency. If we fail to reduce greenhouse gas emissions from burning fossil fuels such as oil and coal, adverse consequences will increase. Scientists predict that if we continue in the way we're going, the Earth could warm by 7.2 degrees Fahrenheit during the 21st century. The impacts of these changes will be far-reaching, affecting weather patterns, wildlife, air quality and human health.

Becoming a Leader in This Movement

This is an opportunity to lead by example locally and nationally. People pay attention when major league sports organizations take action.

Education and Public Relations

Your professional sports club is in a position to have a beneficial impact on these issues beyond the direct environmental benefits of reducing greenhouse gas emissions. A renewable energy initiative undertaken in your sports stadium or arena would provide an excellent opportunity to educate fans and to raise awareness about energy efficiency and renewable energy in your community.

Supporting Energy Independence and Local Commerce

As it currently stands, meeting our energy needs by conventional means is perpetuating our reliance on imported fuel. Additionally, hosting an on-site solar project means that you will not only be meeting part of your electricity load with a clean, local source of energy, but also supporting the local solar industry.

Potential Future Economic Benefits

The likelihood that energy costs will continue to rise is high. Alternatively, solar energy becomes more cost-effective over time, and since it is produced during the day when energy prices are likely to be at a premium, solar electric production can reduce your consumption of high priced energy.

We know you've heard solar is expensive, but there are many ways to lower initial capital costs. Federal and State solar incentives are making solar installation more affordable, and some utilities and local governments have additional grant and rebate programs that could also help to subsidize the project. It may also be possible to enter into a power purchase agreement so that your facility would host a solar array that was owned by a third party. However you decide to approach the project and the subsequent financing, this is the right time to be considering installing solar. With incentives currently making it more affordable and the movement still fresh enough to provide valuable leadership opportunities, there may never be a better time to act.

The Process

Energy Audit

To get an accurate sense of the energy use and efficiency of the building, first get an energy audit. This is often free from local energy providers. While not strictly necessary for installing a solar array, it is useful to know if your facility is operating as efficiently as possible before undertaking any major renewable energy projects.

ŝ

2

See "Energy Efficiency and the Energy Audit," page 3

2 Incentive Determination

ldentifying eligible incentives for the project will help to determine the feasible size and cost of the system and whether a power purchase agreement (PPA) would be possible. *See Appendix C for information on state incentives, page 17.*

3 Site Survey and Feasibility Study

An on-site survey from someone knowledgeable in solar installation will provide more accurate system cost estimates, identify the most eligible and practical location and size for the system, and establish energy production projections.

i.

See "Estimating Costs" and "System Ideas," pages 5 and 10; also see Appendix D, page 22, for city-specific estimates

4 Budget and Funding Strategies Development

Once the site survey is done, a budget can be worked up and funding strategies can be considered. See "Funding Ideas and Strategies" and "A Power Purchase Agreement," pages 6 and 7.

5 Releasing a Request for Proposals

A request for proposals (RFP) can invite bids from either local contractors or potential partners for a power purchase agreement.

ŝ

ł

See "Releasing a Request for Proposals," page 8.

6 System Design and Installation

Once a proposal is accepted, the system can be designed and installed. At this time, the permits must be obtained, materials selected, and the system itself needs to be installed. This will include the construction of racking structures, panel installation, wiring and electrical work and tying the system into both the facility's electrical system and the grid. After that, an inspection will take place, and then system monitoring will begin.

7 Incentives and Accelerated Depreciation

Once the project is installed, any upfront tax credits or incentives can be claimed that year. Incentives that are based on the actual energy production of the system will often be applied after the system has begun to function. Additionally, the accelerated depreciation schedule will provide tax deductions on revenues for five years, ultimately amounting to about 30% of the system's cost. *See Appendix C, page 17.*

THE COST OF POWER FROM THE SYSTEM WILL REMAIN CONSTANT, IMMUNE TO FUTURE PRICE INCREASES.

ENERGY EFFICIENCY AND THE ENERGY AUDIT

Before considering the installation of a solar array, it is worth looking at the way that your facility already uses energy. Understanding the energy efficiency of your building is the first step in any energy project. Therefore, it makes sense to start any project by getting an energy audit. These are often provided for free or at low cost by your local energy provider. An energy audit will provide a better sense of how your facility is using energy and what can be done to reduce energy costs. For your investment, reducing energy consumption will provide the greatest returns, and the financial returns from saving energy can be used to help fund your solar project. Ultimately, it is the implementation of all conservation options, such as efficient light fixtures or better monitoring systems, that will make your facility's energy consumption more cost-effective and environmentally responsible. Remember the "greenest" electricity is the power that we don't consume.

The energy audit is also useful in terms of sizing a potential on-site solar project. Knowing your electricity load helps to scope what's possible in terms of energy savings from power produced through your solar system.

WHO HAS ALREADY GONE SOLAR?

In California, there are more than 50,000 residences with solar panels on their roofs, 100 times the number of ten years ago. In 2004 the state launched a "Million Solar Roof" initiative, which aims to create 3 million kilowatts of installed photovoltaic capacity by 2018.

> On top of the garage at the **US Airways Center** in Phoenix, AZ, an 18,000 sq. ft. solar array was installed in 2009. The project was made possible by a power purchase agreement with Tioga Energy, who invested the upfront costs, amounting to around \$1.5 million, and is responsible for the solar system's upkeep for the next 20 years. Tioga Energy, in turn, gets the rebates from Arizona Public Service (APS), which have been estimated at between \$60,000 to \$85,000 a year.

> In January 2010, the **city of Minneapolis** entered a similar agreement with Best Power International. The system will be built on the roof of the Minneapolis Convention Center, taking up about half of the building's roof, consisting of just over 2,600 panels and supplying 5% to 8% of the convention center's total energy use. Best Power International will own the system and, working with Westwood Renewables, provide design, engineering and project management. A \$2 million grant from Xcel's Energy Renewable Development Fund will go toward the cost of the system. The cost to the city of powering the building will increase from \$18,000 to \$21,500 annually, but the cost of power from the system will remain constant, immune to future price increases.

> Fresno State University entered another such agreement with MMA Renewable Ventures, and installed a 1.1 MW system at the campus in November 2007. The installation is comprised of 10 structures in parking areas, providing 700 covered parking stalls, generating more than 1.5 million kWh of energy annually (enough to power approximately 125 U.S. homes annually). The \$11.9 million dollar initial cost was covered by MMA Renewable Ventures, which then received the federal tax incentives, totaling over \$3.5 million dollars, as well as \$2.8 million dollars in rebate money from PG&E under California's Self Generation Incentive Program. MMA Renewable Ventures now sells the energy back to the university at a fixed rate, and over its 30-year lifespan, the system is projected to save the university about \$13 million in avoided utility costs.

> The corporate world has also begun looking toward solar energy as a way to cut down on energy costs, offset its environmental impact and improve public image. In January 2007, **Staples, Inc.** installed a 433.7 kW solar system on the roof of their Killingly, Connecticut distribution center. The system, which covers almost 74,000 square feet, produces about 412,218 kWh annually, enough to supply 14% of the facility's total energy use. The system was financed by SunEdison, who entered a power purchase agreement with Staples, and additionally by a grant from the Connecticut Clean Energy Fund, which totaled \$1.7 million.

> In October 2009, **Dell** completed a 130 kW solar installation in the parking lot of their headquarters in Round Rock, Texas. The system is comprised of 516 photovoltaic modules set into 11 solar canopies. It produces approximately 131,000 kWh annually, provides shade for roughly 50 parking spaces, and includes plug-in stations for 2 electric vehicles.

However, while we have these and more examples from across the United States, this is still a young movement. Organizations are breaking new ground every year. The installation planned for the top of the Minneapolis Convention Center will be the largest in the upper Midwest to date, 50% larger than the next

WHEN CONSIDERING THE COST OF SOLAR ENERGY, IT IS PROBABLY MOST HELPFUL TO THINK ABOUT THE PROJECTED PAYBACK PERIOD OF THE SYSTEM. largest, built at St. John's University in the fall of 2009. There are therefore numerous ways to become a leader and to support this growing industry, and with incentives currently helping to lower costs, there has never been a better time to get involved.

THE INSTALLATION TIMELINE

While the design, permitting and installation schedules will vary greatly, the actual construction of the solar array can be accomplished with relative efficiency and could therefore likely be completed in the off-season, thereby causing minimal disruption to the functioning of the facility.

For instance, when St. John's University and Abbey installed a 400-kW, 1,820-panel system at their site in Collegeville, Minnesota, construction began in mid-September 2009 and was completed by the end of November of that year.

When FedEx installed a 2.4 MW rooftop installation at their distribution facility in Woodbridge, NJ – a project consisting of 12,400 solar panels and covering 3.3 acres of rooftop – the installation was completed in less than four months. Construction began in August 2009 and was completed by November.

SOLAR ENERGY AND LEED CERTIFICATION

LEED, which stands for Leadership in Energy and Environmental Design and was developed by the U.S. Green Building Council, is a sustainable building certification system that provides internationally recognized third-party verification for green building projects. Achieving LEED certification is an excellent and meaningful way to demonstrate that your building project is environmentally responsible.

Photovoltaic systems can help your building achieve LEED certification by supplying points under the

LEED Energy and Atmosphere credit 2. As of LEED 2009 (version 3.0 of the accreditation system), it is possible to earn up to 7 points through the installation of an on-site renewable energy system.

LEED certification points are determined based on the percentage of the building's overall energy costs that are offset by the renewable energy system. The break down of credits to the percentage of cost displacement is shown in the table to the right.

Percentage Renewable	Points
Energy	
1%	1
3%	2
5%	3
7%	4
9%	5
11%	6
13%	7

CONSIDERING THE COST OF SOLAR

When thinking about the cost of installing a solar energy system, it is useful to note that costs are structured differently from a traditional energy purchase. When buying energy from a utility, consumers pay for the energy they consume in units of kilowatt-hours. However, with a solar energy system, costs are based on installed kilowatt capacity, and actual energy production (in kilowatt-hours) is dependent on system productivity. Therefore, when considering the cost of solar energy, it is probably most helpful to think about the projected payback period of the system. Variables in this calculation are the expected productivity of the system, the cost of energy at the site and available incentives. After the system has paid for itself, the energy generated is essentially free. However, payback can take anywhere from less than five years to more than forty, depending on the cost of conventional energy, the size of the array, the applicable PV incentives and the productivity of the system.

FACTORS THAT IMPACT SYSTEM PRODUCTIVITY

The most obvious variable that affects the productivity of a solar array is the amount of sun to which the system is exposed. However, this isn't the entire story. While it is true that a sunny environment is good for producing solar energy, that doesn't mean that Southern California is the only place that solar energy makes sense or even that it is always the best place for a solar array. In fact, one of the less-considered factors is that solar electric panels become less productive as they heat up.

Solar Electric Energy for your Stadium or Arena | Natural Resources Defense Council | Bonneville Environmental Foundation | July 26, 2010

Furthermore, geographical location isn't the only factor that affects sun exposure. One important thing to keep in mind is the impact of shading. Shade from nearby buildings or other obstructions will have a very significant impact on the productivity of the system, and it is therefore important to choose a site carefully.

Another variable is the orientation of the system – whether the panels are set up in such a way as to absorb the most sunlight possible. For instance, the system that will be installed on top of the Minnesota Convention Center is designed so that the panels are set up in three slightly different directions to fill different demands. One-third of the array's panels are oriented for overall maximum energy capture, one-third for maximum capture at the time of the convention center's peak energy use, and one-third for maximum capture at the time of Xcel's peak demand.

Because of the way that orientation impacts productivity, some people opt to put tracking devices on their solar panels. This works particularly well on a pole-mounted array. This way, the photovoltaic modules actually follow the progress of the sun and maintain the highest productivity level possible as the sun moves throughout the day and year.

Another, often unconsidered factor is simply the cleanliness of the panels. Something as rudimentary as keeping the modules free from dirt makes a difference in how much energy a system produces.

ESTIMATING COSTS

According to a study done by the Lawrence Berkeley National Laboratory, the average cost of installed PV in 2008 was \$7.50 per watt. However, the cost of a solar installation can vary greatly. It is dependent on the size and location of the system. Prices can be lower when materials are bought in volume, and per-watt costs are decreased when equipment, development and transaction costs are dispersed over a larger number of watts. In addition, project costs will be affected by such factors as the structural installation that the site requires and the local solar market. The following table provides the average cost of installed solar per-watt for different system sizes. These numbers are estimates derived from information in the Lawrence Berkeley National Laboratory study *Tracking the Sun II: The Installed Cost of Photovoltaics in the U.S. from 1998-2008*.

System Size	Average Per-Watt Cost	Cost Range
<2 kW	\$9.00	\$7.00-\$11.50
2-5 kW	\$8.50	\$7.00-\$10.00
5-10 kW	\$8.00	\$6.50-\$9.50
10-30 kW	\$8.00	\$6.50-\$9.50
30-100 kW	\$8.00	\$5.75-\$10.25
100-250 kW	\$7.50	\$5.75-\$9.75
250-500 kW	\$7.50	\$5.50-\$8.25
500-750 kW	\$7.50	\$5.00-\$7.75

By extrapolating from these numbers, it is possible to estimate the cost of a project according to its scale.

System Size	Cost Estimate	With Federal Tax Credit
500 kW	\$3,250,000	\$2,275,000
250 kW	\$1,750,000	\$1,225,000
100 kW	\$750,000	\$525,000
50 kW	\$400,000	\$280,000
25 kW	\$200,000	\$140,000
10 kW	\$80,000	\$56,000

THE SAN
 FRANCISCO
 GIANTS, FOR
 INSTANCE, NOW
 HOUSE A SOLAR
 ARRAY FOR PG&E,
 WHICH OWNS
 THE SYSTEM AND
 USES THE ENERGY
 GENERATED TO
 HELP MEET THEIR
 RENEWABLE
 ENERGY
 PORTFOLIO
 REQUIREMENTS.

These averages encompass all costs associated with both materials and full installation, including racking structures, permitting, warranties, etc. However, it should be remembered that the numbers above should be taken only as estimates of what you might expect to pay. While these costs reflect full system components, actual costs will be affected by the amount of needed structural reinforcements and additional installation requirements. Also, permitting fees, codes for construction, and other factors dictated by the local solar market will vary by state and city. In general, states with larger PV markets will have more competitive installation costs and possibly a more streamlined permitting process.

It should also be noted that these numbers reflect cost averages from 2008. The trend has seen solar prices decreasing over time, and it is possible that current market prices are lower in your area.

PHOTOVOLTAIC INSTALLATION INCENTIVES

As an incentive to install PV systems, the federal government offers a Business Energy Investment Tax Credit to the commercial and industrial sectors and to utilities. This credit covers 30% of the cost of the PV system, including labor and installation costs. There is no maximum for the federal incentive. It is scheduled to remain at the current 30% until December 31, 2016, when it will be reduced to 10% of system costs.

Enacted in February 2009, the American Recovery and Reinvestment Act of 2009 has made it possible to forego this tax credit in lieu of an upfront federal grant, offered by the US Department of Treasury in the renewable energy grants program. While this program currently only extends until the end of 2010, it is possible that the program will be extended.

Also, under the Modified Accelerated Cost-Recovery System (MACRS), the depreciation schedule is accelerated so that all the deductions can be claimed over the first five years, reducing the payback period substantially.

Additionally, many states offer their own incentives. These vary dramatically in amount, in the way they are calculated and in the schedule of payment. Some of them are structured in the same way as the federal credit, reimbursing a percentage of the system's cost. Many state incentive programs have a cap, creating a maximum incentive amount. Other states have set incentives based on the wattage capacity rating of the array, and still others base their incentives on annual kWh production. See appendix C for more information on state-by-state incentives.

FUNDING IDEAS AND STRATEGIES

There are numerous approaches to financing the installation of a solar system, a few of which are discussed here. A power purchase agreement (PPA) might provide an excellent and convenient solution and will be explained in the next section.

Another financing approach involves partnering with a utility. The San Francisco Giants, for instance, now house a solar array for PG&E, which owns the system and uses the energy generated to help meet their renewable energy portfolio requirements.

A third approach involves partnering with a solar company. Particularly in areas where local solar markets are still up-and-coming, it is sometimes possible to get solar installers to donate or discount the labor associated with projects that will generate good publicity. In such an instance, much of the costs for the project would be limited to purchasing the materials.

Similarly, because of the unique and powerful position that professional sports clubs hold, it might be worth talking to solar providers about creating an educational or promotional opportunity within the sports facility in exchange for reduced costs. This would not only be a way to support the local solar market, but also to provide education about renewable energy to the community.

Other ideas include selling the project as a sponsorship package or having buy-ins within the community so that individuals or local businesses could own a piece of the system – such as a solar panel – and have their names posted.

You might also consider selling some piece of the renewable energy claims generated by the system to fans by having a "solar ticket" option. For instance, fans might be given the option of buying a special ticket whereby they would pay slightly more to support the solar electric system and to offset some of their own energy use or carbon impact. IF PR AND THE ASSOCIATED CLAIMS ARE A GOAL FOR **SUPPORTING A** SOLAR PROJECT AND YOU CHOOSE THE PPA APPROACH, THEN YOU SHOULD EXPECT TO **NEGOTIATE (AND** PAY A PREMIUM) FOR LEGAL RIGHTS TO "OWN" THE ENVIRONMENTAL **BENEFITS AND TO MAKE PUBLIC** CLAIMS.

There are additional loan and grant programs that might provide further funding opportunities. The Improvement and Extension Act of 2008, for instance, authorized the issuance of Qualified Energy Bonds (QECBs), which can be used by local governments to fund certain energy projects. Property-Assessed Clean Energy (PACE) is a property tax lien financing program that allows property owners to borrow money to pay for energy projects. The loan is then repaid over a period of 20 years according to an annual assessment on the property tax bill. To find out if your state has passed legislation allowing PACE financing, go to either the PACE or DSIRE website (www.pacenow.org or www.dsire.org).

The US Department of Energy has created the Energy Efficiency and Conservation Block Grant Program (EECBG), which provides grants to be used in a variety of energy efficiency and conservation projects including renewable energy installations on government buildings.

Financing options for solar projects are varied; some states, counties and cities have grant programs, and, of course, different communities may present their own funding possibilities.

A POWER PURCHASE AGREEMENT

A power purchase agreement (PPA) allows your facility to host a solar installation and reap almost all of the benefits of solar without the initial cost outlay. In such an arrangement, the solar array is owned, operated and maintained by a third party, which then sells the energy back to your facility. The array, located on or near your property, still provides a powerful symbol of environmental commitment, and through the PPA, you are guaranteed a predictable energy price that may be less subject to future energy price increases, while upkeep on the system is maintained by a third party.

A PPA is a common arrangement for commercial applications of solar and may be well-suited to professional sports clubs who want to show their commitment to renewable energy but are not in a position to finance the installation of a photovoltaic system themselves. The Phoenix Suns, for instance, have entered into such an agreement for the 194-kilowatt solar array located on the US Airways Garage roof.

Another example is the San Diego Convention Center (SDCC). In December 2009, they announced a partnership with Alternative Energy Capital in the installation of a 538 kW photovoltaic solar system. The power purchase agreement came into being after the SDCC put out a request for proposals (RFP) and ultimately settled on Alternative Energy Capital to procure, install, own and maintain the system, which will consist of 1,900 solar panels and cover roughly 90,000 sq. ft. on the center's roof.

Although the project is estimated to cost \$3.2 million, the SDCC will not expend any funds for installation. Instead, the San Diego Convention Center has agreed to buy the energy produced by the system for a period of 20 years at 18.8¢/kWh, which is less than the SDCC currently pays San Diego Gas & Electric for energy. The system will produce enough energy to cover approximately 10% of the convention center's energy consumption and is expected to save the SDCC about \$1.7 million in electricity costs over the next two decades. At the end of twenty years, the center will have the option of buying the PV system outright from Alternative Energy Capital.

Similarly, in 2009 the Oregon Convention Center (OCC) entered into an arrangement with SunEdison. In the spring of 2010, SunEdison will be constructing a 1.184 MW PV system on the roof of the OCC. SunEdison is responsible for financing, constructing, and operating the system. The Oregon Convention Center will then buy the energy produced by the system from SunEdison at a fixed price at or below current retail rates. The PV array is projected to produce enough energy to account for 12% of the facility's current use.

In October 2009, Solar Tech, a group in California, released a contract template for power purchase agreements. More information can found at their website, www.solartech.org.

So what's the catch when using a PPA approach to solar? It's in the claims. Owning your own solar project allows you the right to make claims regarding the environmental benefits resulting from your project. For instance, you can state that some or all of your operations are "solar powered," and you can claim the greenhouse gas reduction benefits (e.g., your project reduced XX tons of carbon dioxide emissions).

Using a PPA approach means that you do not own the system, but rather you are a host for one. This also means that you are hosting a system that provides environmental benefits, but you don't own those

🗮 A RFP WILL OFTEN STATE A DESIRED SYSTEM SIZE RANGE. THE PROJECTED TIME LINE FOR THE PROJECT, AND WHERE THE FACILITY OWNER WOULD LIKE THE ARRAY TO **BE LOCATED. A RFP CAN ALSO** EXPLICITLY LAY OUT EXPECTATIONS FOR BOTH THE PROJECT AND THE PROPOSER. **INCLUDING WHO** WOULD OWN THE ENVIRONMENTAL **ATTRIBUTES PRODUCED BY THE PV SYSTEM.**

and should not make any public claims around being "solar powered" or to the associated greenhouse gas reduction benefits. If PR and the associated claims are a goal for supporting a solar project and you choose the PPA approach, then you should expect to negotiate (and pay a premium) for legal rights to "own" the environmental benefits and to make public claims.

RELEASING A REQUEST FOR PROPOSALS (RFP)

After deciding to pursue a solar project, the next step would typically be issuing a request for proposals. This can be done either to find a group to own and operate the system in a power purchase agreement or to get bids from designers and contractors to do the installation work.

If you decide to own the PV system, the request for proposals will be a fairly standard request for bids from contractors. However, it would not be unusual to engage in a partnership with a third party who would manage the development and oversee installation of the project. A project manager can help establish the basic blueprint of the project based on the site and your needs. The manager can issue the RFP, review the proposals that come back, and ultimately oversee the project.

The Bonneville Environmental Foundation (BEF), for instance, issued a RFP on behalf of the Snohomish Public Utility District Headquarters (a publicly-owned utility located in Washington State) in the spring of 2009, in which the project manager clearly stated the parameters of the project. The Utility stipulated the size, location, attributes of the materials to be used, and the specifics about the mounting system, and BEF indicated these requirements in the bidding document. BEF has also provided expertise to northwestern professional sports organizations who are actively pursuing various green initiatives, including large solar arrays.

If a Power Purchase Agreement is desirable, there are some things to keep in mind. Whether or not a PPA will ultimately work is greatly impacted by the incentives that are available at your site. In states with higher incentives or when dealing with meaningful utility incentives, you can obtain a better deal from potential partners.

While the third party in a PPA will ultimately be responsible for the materials, feasibility and design, it may be helpful for you to have determined some general things about the array before preparing the RFP. A RFP will often state a desired system size range, the projected time line for the project, and where the facility owner would like the array to be located. A RFP can also explicitly lay out expectations for both the project and the Proposer, including who would own the environmental attributes produced by the PV system.

For instance, the RFP issued by the Metropolitan Exposition-Recreation Commission (MERC) to get a PPA for the Oregon Convention Center states that the desired PV array will be between 1 MW and 1.25 MW and that it will be constructed on the southern portion of the Center's roof. The RFP also specifies that the successful Proposer will be responsible for obtaining all building and other permits, for constructing, insuring, operating and maintaining the system, for all necessary inspections, and for monitoring the systems performance. Furthermore, MERC stipulates that the expected cost of energy from the system will be equal to or less than the Convention Center's current energy costs. MERC entered into a PPA agreement with SunEdison in November of 2009.

UNDERSTANDING GREEN ENERGY

The world of "green energy" is a sometimes complex one and can extend well beyond the simplicity of installing solar panels on the roof and tying them into the grid-system. Of course, that is a perfect example of green energy, but it often doesn't end there.

It is, for instance, possible to power a building with green energy without an on-site renewable energy system, and conversely, it is also possible to have an on-site renewable energy system without being able to claim that your building is "green powered."

There are three ways of obtaining the right to claim that your building is green-powered without owning a renewable energy system. One is to purchase green power from a utility. In such an instance, you will pay a premium above the usual cost of energy and thereby support the renewable systems that source the utility's green energy.

CONNECTING TO THE GRID IS AN IMPORTANT PIECE **OF INSTALLING** A RENEWABLE **ENERGY SYSTEM BECAUSE IT** ENSURES THAT, EVEN IF YOU AREN'T **CONSUMING THE ENERGY THAT** THE SYSTEM IS **PRODUCING AT** THE TIME OF PRODUCTION, **IT IS BEING DISTRIBUTED AND** USED.

A second method of purchasing claims and thereby supporting green energy is by buying renewable energy certificates (RECs). This will be explained more fully in the following section. It is very similar to purchasing green utility power, except that you pay the premium above the usual cost of energy to a third party in a separate transaction from purchasing your actual energy.

Conversely, if you own a grid-tied renewable energy system such as a solar array, you would also own the renewable energy certificates that the system generates, and these would become a separate commodity from the energy itself. You could then sell the RECs to help finance the system. In such a case, you would be selling the environmental claims to another party and might therefore actually be using the energy created by the solar array without legally being able to claim that your facility was "solar-powered."

RENEWABLE ENERGY CERTIFICATES

Renewable Energy Certificates (also known as Renewable Energy Credits, Green Tags or RECs) represent legal title to the non-electricity benefits produced from renewable energy facilities. In terms of measurement, one REC represents the benefits produced from one megawatt-hour's worth of renewable energy. On average in the United States, this is approximately 1,500 pounds of greenhouse gas emissions avoided by not using electricity that would have been produced on the power grid by burning fossil fuels.

The equivalent to purchasing utility green power, buying RECs allows the purchaser to make claims of ownership for the environmental benefits that can be used to mitigate greenhouse gas emissions from their own activities. For instance a building may calculate that they have a "carbon footprint" resulting from their consumption of 10,000 MWh of electricity in a year. That building could elect to purchase 10,000 RECs in order to "offset" their carbon footprint resulting from that electricity use.

RECs are produced from any grid-connected renewable energy project (everything from large utility wind farms to residential-scale solar). When considering an on-site solar project, one should consider the RECs an asset to be produced by the solar system in the same way they would consider the electricity production.

RECs may be retained by the project owner or sold depending on the financing package for the project. If a renewable energy project owner sells its RECs, then it sells the right to claim any of the environmental benefits from their project (those rights have been purchased by another party). At the most basic level, it means that if I own a solar project and then sell the RECs to my neighbor, I don't get to make any claims about offsetting my carbon emissions or being "solar-powered." Those rights now belong to my neighbor whose dollars helped the project be funded (through buying the RECs).

As an entity considering a solar project, keep in mind that the RECs should be a point of financial negotiation. And if you intend to make any claims about being "solar-powered" or "offsetting emissions," then you need to retain or pay for the RECs generated from the system.

GRID INTERCONNECTION AND NET METERING

Connecting to the grid is an important piece of installing a renewable energy system because it ensures that, even if you aren't consuming the energy that the system is producing at the time of production, it is being distributed and used. In most cases, whatever energy is distributed across the grid will then be credited to your energy bill by the utility. This is done through a net-metering process. However, net-metering policies vary by state and even sometimes by utility, and so it is important to know how the system works in your area. The Interstate Renewable Energy Council (IREC) maintains an online table that sets out net-metering laws, regulations and utility programs state-by-state at http://www.irecusa.org. This may be a useful resource to consult, as it may affect what system size is most desirable or feasible.

SYSTEM IDEAS

There are many potential locations for installing solar panels, and each is site-dependent. The following are some possible locations to consider, including case studies of some existing installations.

ARENA ROOF

One potential installation location is the roof of your facility. This location has the advantage of requiring minimal racking structures to hold the solar panels, which may cut down on the cost of the array. Barring the existence of taller buildings in the immediate vicinity, there is less of a chance that roof solar panels will be shaded out. However, some facilities may not have roofs with the load-bearing capacity necessary to support the additional weight of a PV array. One 2.5'x5' crystalline silicon solar module with a DC rating of between 130 and 230 W (usually about 170 W) weighs roughly 35 lbs, not including the racks or other structures required to hold them.

Another option for a roof installation where weight is a concern is thin-film solar cells. Thin-film cells are much lighter weight than the more traditional crystalline silicon solar panels and would have little impact on the existing roof. They would also be laid out directly on the roof, eliminating the need for racking structures. The disadvantage to thin-film cells is that the technology is not yet as efficient as crystalline silicon panels, and they therefore do not produce as much energy.

PARKING LOTS AND GARAGES

For arenas with parking garages or unshaded parking lots, carport-like installations may be a good option. While the racking structures that cover parking spaces will add to the cost of the installation, they may provide other benefits such as shaded parking for cars and a reduction in the urban heat island effect created by large asphalt lots. Such installations are also highly visible, which is advantageous in creating an educational tool, in raising awareness in the community, and as a tangible symbol of environmental commitment. Additionally, as electric plug-in vehicles become more prevalent, it would be possible to incorporate charging stations in these arrays.

CANOPY MOUNTED

Another possible site is a canopy over a pedestrian area. Both the San Francisco Giants and the Cleveland Indians installed such arrays at their ballparks: the Giants over the Willie Mays pedestrian ramp, and the Indians over a pavilion on the upper deck. Although this solution has the added cost of the canopy, it has the potential advantage of being highly visible and is well suited to a small demonstration installation.

OFFICE BUILDING ROOF

Another option to consider is on the roof of a nearby building. As a part of their installation, the San Francisco Giants put an array on top of the Giants Building, an office building, which is a part of the stadium complex. This option could eliminate the cost of racking systems without raising any of the structural concerns that an arena roof might. The array would be a traditional rooftop installation.

POLE MOUNTED

If a rooftop installation is not viable and a parking structure or canopy-mounted installation is either not feasible or not desirable, a pole-mounted array is another option. While such an array would entail mounting costs, one advantage of this type of system is that it can be adjusted seasonally to maximize energy production. It is also possible to take this principle one step further and install a tracking device on a pole-mounted system so that the solar modules follow the sun, increasing the array's output. This is a highly visible and space-efficient option, ideally suited for a demonstration or educational installation, and could be placed in almost any spot that does not get shaded.

SAMPLE PV SYSTEM PROFILES

The following are a few examples of PV installations operating at professional sports arenas.

STAPLES CENTER - ROOF INSTALLATION

SYSTEM SIZE:

345.6 kW DC

SYSTEM SCHEMATICS:

1,728 solar panels

approx. 25,000 sq. ft.

ANNUAL ENERGY PRODUCTION:

approx. 525,000 kWh

SYSTEM COST:

approx. \$3.3 million

PER-WATT COST:

approx. \$9.55

In December of 2008, an installation was completed on the roof of the STAPLES Center in Los Angeles, California. The system is comprised of 1,728 solar panels, creating an array rated at 345.6 kW DC capacity and covering about 25,000 sq. ft., half of the total area of the roof. This was the largest array that could be installed given the load-bearing capacity of the roof. Some structural reinforcement to the building was required. The system cost approximately \$3.3 million dollars before incentives, placing the per-watt cost at about \$9.55.

US AIRWAYS CENTER – GARAGE ROOF INSTALLATION

SYSTEM SIZE: 194 kW DC SYSTEM SCHEMATICS: 1,100 solar panels approx. 18,000 sq. ft. ANNUAL ENERGY PRODUCTION: approx. 331,233 kWh SYSTEM COST: approx. \$1.5 million PER-WATT COST: approx. \$7.73

At the US Airways Center in Phoenix, Arizona, 1,100 panels were installed on the garage roof in July of 2009. The array is on the fifth level of the garage. This was chosen as the best location because the roof of the arena itself could not support the weight of the PV system. The array takes up about 18,000 sq. ft., is rated at 194 kW DC capacity, and provides shade for the cars parked on top of the garage roof. The system cost approximately \$1.5 million before incentives, placing the per-watt cost at about \$7.73. The annual incentives from APS were estimated to be between \$60,000 and \$85,000 annually, on top of the federal and Arizona state incentives, which were roughly \$475,000.

PROGRESSIVE FIELD – CANOPY INSTALLATION

SYSTEM SIZE: 8.4 kW DC SYSTEM SCHEMATICS: 42 solar panels 86 ft. long 15 ft. high ANNUAL ENERGY PRODUCTION: approx. 9,400 kWh SYSTEM COST: approx. \$180,000 PER-WATT COST: approx. \$15.48

Photo of the Progressive Field array, taken from http://www. easywaystogogreen.com/urban-and-city-green-living/solar-panels-andmajor-league-baseball/

In June of 2007, the Cleveland Indians installed a PV array on a canopy. It is a part of a concession stand on the upper deck of the ballpark and provides shade over a pedestrian pavilion. The array is comprised of 42 solar panels and is rated at 8.4 kW DC capacity. Additionally, the installation has an educational component, equipped with a slideshow that runs constantly, giving current, real-time energy production information and suggesting ways for fans to get involved in renewable energy initiatives. The array is 86 ft. long and 15 ft. high. The total cost of the system, including the education component, was approximately \$180,000. Roughly \$50,000 of this was dedicated to the educational piece, which places the per-watt cost of the solar installation alone at about \$15.48. Of the remaining \$130,000, \$30,000 was covered by grants and tax credits from the Ohio Department of Development.

APPENDIX A – GLOSSARY

GENERAL ENERGY TERMS

Alternating Current (AC) electricity – the form of electricity produced and transmitted over the power grid and most commonly used in day-to-day life.

Direct Current (DC) electricity – another form of electricity, which must then be converted into AC in order to be grid compatible; solar systems produce DC energy and photovoltaic module capacity is rated in DC.

Greenhouse effect – the buildup of greenhouse gases causing solar heat to become trapped within the atmosphere; human activity, such as the burning of fossil fuels, contributes to this phenomenon, creating an enhanced greenhouse effect that causes climate change.

Greenhouse gases – gases that contribute to the greenhouse effect; carbon dioxide, methane, nitrous oxide, water vapor, and halocarbons; carbon dioxide makes the largest net contribution to atmospheric changes that threaten disruptive global climate change.

Grid – the network of transmission lines, substations, and transformers that collect and distribute electricity across the country.

Kilowatt (kW) – a measure of power or rate of energy transmission equivalent to 1,000 watts.

Kilowatt Hour (**kWh**) – a unit used by utility companies to determine how much energy has been used over time; one kWh is equivalent to the energy it takes to run a 100-watt light bulb for 10 hours.

Megawatt (MW) – a measure of power or rate of energy transmission equivalent to 1,000 kilowatts.

Megawatt Hour (**MWh**) - 1,000 kWh; 1 MWh is roughly the amount of energy than an average home consumes in one month.

Renewable energy – (also referred to as green power), energy (or power) that is generated from renewable resources, such as a solar array or wind turbine; typically represents a decrease in greenhouse gas emissions over traditional fossil fuel-derived energy.

Renewable portfolio standard – regulations requiring that a utility provide a specified amount or percentage of electricity from renewable resources.

Urban heat island effect – an increase in temperature caused by land modification due to urban development, which reduces vegetation, prevents natural heat radiation, and introduces heat-retaining materials such as concrete and asphalt.

SOLAR TERMS

Crystalline silicon panels – (also called wafer silicon panels) solar modules consisting of silicon crystals; currently the most widely used solar panels.

Inverter – a piece of equipment that converts the DC electricity produced by the solar array into AC electricity.

Net metering – the system that tracks the amount of energy that flows back into the grid from an onsite renewable energy source, such as a solar array; allows the owner of the solar array to accumulate an energy credit or payment.

Photovoltaic (**PV**) – describes a technology capable of producing voltage when exposed to light energy; solar-electric.

Photovoltaic module – a packaged, interconnected group of photovoltaic cells; essentially, a solar panel.

Solar array – the entire system of connected photovoltaic modules.

Solar water heating – a system or method in which solar energy is used to heat water.

Thin-film cells – solar cells that are usually made by thin-film laminating photovoltaic materials; a thinner, lighter, but as of this time less efficient alternative to the more traditional crystalline silicon solar panel.

FEDERAL INCENTIVE TERMS

Accelerated depreciation deductions – allows businesses to recover investments through tax deductions on certain kinds of property as their value depreciates; for solar arrays, this schedule is accelerated to span a five year period.

Business Energy Investment Tax Credit – federal tax credit providing incentive money based on the initial investment in a renewable energy system; it covers 30% of project costs for photovoltaic solar. Originally available under 26 USC § 48, it was later expanded first in the *Energy Policy Act of 2005*, increasing the 10% credit to a 30% credit, and then by the *Energy Improvement and Extension Act of 2008* and *The American Recovery and Reinvestment Act of 2009*. The current 30% credit will remain in place until December 31, 2016, when it will revert back to 10%.

Renewable Electricity Production Tax Credit – federal production tax credit providing incentives on a per kWh basis; however, while this production incentive covers many renewable technologies, photovoltaic solar is not one of them.

US Department of Treasury Renewable Energy Grants – grant money that can be taken in lieu of the Business Energy Investment Tax Credit.

ENVIRONMENTAL BENEFIT TERMS

Double counting – credit for the environmental benefits associated with a single unit of carbon credit or offset claimed by more than one party.

Greenwashing – promoting or exaggerating environmental benefits of a product or service that are not really present.

Renewable energy certificate (REC) – a property right representing a claim to the environmental benefits (i.e. greenhouse gas emission displacement) associated with the production of 1,000 kWh (or 1 MWh) of clean, renewable energy; also referred to as a green tag or a renewable energy credit.

Verification – third party oversight of a REC or offset product which involves the determination that each kilowatt sold to an entity is only sold once and originates from a qualifying project.

OTHER IMPORTANT CONCEPTS

Green building – building design, construction, and operation that conforms to principles of sustainability and energy efficiency, most commonly known as the US Green Building Council's LEED program (Leadership in Energy and Environmental Design).

Power purchase agreement (PPA) – an agreement whereby a third party owns and maintains the solar installation and sells the energy produced back to the property owner or tenant.

APPENDIX B – PHYSICAL DIMENSIONS OF PV MODULES

As a generalization, a standard crystalline silicon 2.5'x5' solar module (or panel) has a DC capacity rating of between 130 and 230 watts and weighs approximately 35 lbs. The chart below gives general weight and spatial dimensions for different size systems using an average weight of 35 lbs per 170-watt module. However, it should be remembered that these numbers reflect only the size and weight of the solar panels and that the actual array will require additional racking structures and spacing between the panels.

System	Required Number	Estimated Weight of	Estimated Spatial Dimensions
Size	of 170-W Panels	Modules	of Modules
500 kW	2,941	102,935 lbs	36,763 sq. ft.
250 kW	1,470	51,450 lbs	18,375 sq. ft.
100 kW	588	20,580 lbs	7,350 sq. ft.
50 kW	294	10,290 lbs	3,675 sq. ft.
25 kW	147	5,145 lbs	18,38 sq. ft.
10 kW	59	2,065 lbs	738 sq. ft.

APPENDIX C – STATE INCENTIVES

The table below provides state-by-state incentive information, current as of March 2010, for all states in the US that have MLB, NBA, NHL, NFL or MLS teams. The incentives summarized here do not include the utility rebate programs of individual utility companies, production incentives that would require the sale of renewable energy credits or potential grant money. This information can be found in the Database of State Incentives for Renewables and Efficiency (DSIRE) at <u>www.dsireusa.org</u>. As state incentives change often, it is important to check that you have the most up to date information.

State	Incentives	Contacts
Arizona	• Arizona State Corporate Tax Credit: 10% of installed cost, not to exceed \$25,000 in one year, expires 12/31/2010.	Arizona Department of Commerce Energy Office (602) 771-1100 <u>solarenergy@azcommerce.com</u> <u>www.azcommerce.com/Energy/</u>
California	 California Solar Initiative: incentives are scaled to decrease as demand increases based on district; as of the end of March, 2010 incentives were at \$0.15 per kWh in the PG&E and SDG&E service areas and at \$0.22 per kWh in the SCE service area. <i>For San Francisco solar</i> <i>installations only:</i> San Francisco Solar Energy Incentive Program: \$1,500 per kW, maximum incentive of \$10,000. 	Pacific Gas & Electric (PG&E) (877) 743-4112 solar@pge.com www.pge.com/solar California Center for Sustainable Energy (CCSE) (858) 244-1177 csi@energycenter.org www.energycenter.org Southern California Edison (SCE) (800) 799-4177 greenh@sce.com www.sce.com San Francisco Public Utilities Commission (415) 551-4318 solarincentive@sfwater.org http://sfwater.org/home.cfm
Colorado	• No current state-wide incentives	
Florida	• State Incentive Program: \$4 per watt, maximum of \$100,000, expires 6/20/2010.	Florida Energy Office (850) 487-3800 <u>energy@eog.myflorida.com</u> <u>http://www.myfloridaclimate.com</u>

Georgia	• Clean Energy Tax Credit: 35% of system cost, maximum incentive of \$500,000, expires 12/31/2012.	Georgia Department of Revenue (404) 417-4480 <u>taxpayer.services@dor.ga.gov</u> <u>https://etax.dor.ga.gov/</u>
Illinois	• State Rebate Program: 30% of system cost, maximum incentive of \$50,000, minimum system size of 1 kW.	Scott Henkel Dept. of Commerce & Economic Opportunity (217) 785 3968 <u>scott.henkel@illinois.gov</u>
Indiana	• No current state-wide incentives	
Louisiana	• No current state-wide incentives	
Maryland	 Clean Energy Production Tax Credit: \$0.0085 per kWh, maximum of \$2.5 million over five years, expires 12/3/2010. State Rebate Program: \$1.25 per Watt for first 2 kW; \$0.75 per Watt for next 6 kW; and \$0.25 per Watt for next 12 kW, to maximum of \$10,000 (maximum qualifying system size is 20 kW). 	Chris Rice Maryland Energy Administration (410) 260-7207 <u>CRice@energy.state.md.us</u> <u>http://www.energy.state.md.us/</u> Public Information Officer Maryland Energy Administration (410) 260-7655 <u>meainfo@energy.state.md.us</u> <u>http://www.energy.state.md.us/</u>
Massachusetts	 Commonwealth Solar Stimulus: \$1.50 per watt for the first 25 kW, \$1.00 per watt for the next 75 kW, \$0.50 per watt for the final 100 kW, minimum system size of 5 kW, maximum size 200 kW. 	Massachusetts Clean Energy Center <u>cs@masscec.com</u> <u>www.commonwealthsolar.org/</u>
Michigan	No current state-wide incentives	
Minnesota	• No current state-wide incentives	
Missouri	• No current state-wide incentives	
New Jersey	 New Jersey Customer-Sited Renewable Energy Rebates: \$0.90 per Watt, 50 kW system maximum, funding cycle closes tri-annually. State loan/grant program could provide up to 50% of project 	New Jersey Board of Public Utilities Office of Clean Energy (866) 657-6278 www.njcleanenergy.com/renewable -energy/home/home

New York	 costs, 80% of which could be grants. <i>If RECs were going to be sold, it would be loan only, loan has 0% interest for a term of up to 10 years</i> NYSERDA PV Incentive Program: \$1.75 per watt, maximum incentive of \$112,500, expires 6/30/2010. <i>Generated RECs would be</i> 	New Jersey Economic Development Authority (866) 534-7789 <u>CESCI@njeda.com</u> www.njeda.com/ New York State Energy Research and Development Authority (518) 862-1090 <u>info@nyserda.org</u> <u>http://www.nyserda.org</u>
	owned by NYSERDA for the first 3 years	
North Carolina	• Renewable Energy Tax Credit: 35% of system cost, \$2.5 million maximum, expires 12/31/2015.	Brian Lips North Carolina Solar Center (919) 515-3954 <u>brian_lips@ncsu.edu</u> <u>http://www.ncsc.ncsu.edu</u> Department of Revenue (877) 252-3052 (877) 308-9103 <u>www.dornc.com/</u>
Ohio	 ODOD - Advanced Energy Program Grants: (Customers must be in the service area of one of the following utilities American Electric Power, Dayton Power & Light, Duke Energy, or FirstEnergy.) \$3.50 per watt, minimum system size is 10 kW (DC) for traditional systems and 50 kW for third- party systems, maximum grant award is the lesser of 50% of project costs, or \$150,000 for traditional systems and \$200,000 for third-party systems 	Preston Boone Ohio Department of Development Energy Office <u>Preston.Boone@development.ohio.</u> <u>gov</u> <u>www.odod.state.oh.us/cdd/oee/</u>
Oklahoma	• No current state-wide incentives	

Oregon	• Business Energy Tax Credit: 50% of eligible project costs, distributed over 5 years (10%/year), \$10 million maximum, expires 5/1/2010.	Matt Hale Oregon Department of Energy (503) 378-4040 <u>Matt.Hale@state.or.us</u> <u>www.oregon.gov/energy</u> Oregon Department of Revenue (503) 378-4988 <u>http://www.oregon.gov/DOR/</u>
Pennsylvania	• No current state-wide incentives	
Tennessee	 Tennessee Clean Energy Technology Grant: 40% of system cost, maximum of \$75,000 	Ryan Gooch Tennessee Department of Economic & Community Development Energy Division (615) 741-2994 <u>Ryan.Gooch@state.tn.us</u> <u>www.tennessee.gov/ecd/CD_energ</u> <u>y.html</u> Gil Melear-Hough Southern Alliance for Clean Energy (865) 637-6055 Ext.15 <u>gil@cleanenergy.org</u> <u>www.cleanenergy.org/</u>
Texas	• No current state-wide incentives	
Utah	• Renewable Energy Systems Tax Credit: 10% of system cost, maximum set at \$50,000.	Elise Brown State Energy Program (801) 537-3365 <u>elisebrown@utah.gov</u> <u>http://geology.utah.gov/sep/</u> Utah State Tax Commission (801) 297-2200 <u>tax.utah.gov/index.html</u>
Washington	• Washington Renewable Energy Production Incentive: \$0.12 per kWh - \$0.54 per kWh through 6/30/2020, not to exceed \$5,000 per year; higher incentive rate is applicable if all array materials were manufactured in Washington State.	Phil Lou Washington State University The Northwest Solar Center (206) 629-8017 <u>http://northwestsolarcenter.org</u>

Wisconsin	• Focus on Energy - Renewable Energy Cash-Back Rewards: (System must be in the service	Focus On Energy - Renewable Energy Program (800) 762-7077
	<i>territory of a participating</i> <i>electric provider.</i>) \$1.00 per kWh produced annually, for lesser of 25% of system costs or \$50,000, minimum system size is 0.5 kW, maximum is 50 kW.	renewableapplications@focusonene rgy.com www.focusonenergy.com

APPENDIX D – LOCATION SPECIFIC ESTIMATES

Following are cost estimates for systems of different sizes, adapted to select cities. These location-specific estimates include state incentives, approximate energy production based on the location's sun exposure, and payback calculations using average state energy costs. As these numbers use state averages to estimate energy costs, they are here to provide a general sense of payback time, and do not reflect definite projections. Additionally, it should be remembered that because solar energy is produced during peak-demand hours, payback periods could be shorter than these estimates reflect.

Annual Energy Production was calculated assuming a fixed tilt array facing due south at a tilt equal to location's latitude and a DC to AC derate factor of 0.8, which represents the amount of energy lost during conversion from direct to alternating current. Avoided CO_2 Emissions were calculated using an average national approximation of 1,500 lbs per kWh; actual avoided emissions will vary based on local energy systems. Pay back period was calculated based on state-average energy cost.

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	764,003 kWh	5 years	1,146,000 lbs/yr
250 kW	\$1,750,000	\$1,225,000	382,002 kWh	6 years	573,000 lbs/yr
100 kW	\$750,000	\$525,000	152,801 kWh	7 years	229,200 lbs/yr
50 kW	\$400,000	\$280,000	76,400 kWh	8 years	114,600 lbs/yr
25 kW	\$200,000	\$140,000	38,200 kWh	8 years	57,300 lbs/yr
10 kW	\$80,000	\$56,000	15,280 kWh	8 years	22,920 lbs/yr

Anaheim, California

**Calculated using incentive rates current as of March 2010 for the SCE district:* \$0.22 *per kWh and the state average energy cost of* \$0.125 *per kWh.*

Arlington, Texas

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	729,620 kWh	18 years	1,094,430 lbs/yr
250 kW	\$1,750,000	\$1,225,000	364,810 kWh	20 years	547,215 lbs/yr
100 kW	\$750,000	\$525,000	145,920 kWh	21 years	218,880 lbs/yr
50 kW	\$400,000	\$280,000	72,960 kWh	23 years	109,440 lbs/yr
25 kW	\$200,000	\$140,000	36,480 kWh	23 years	54,720 lbs/yr
10 kW	\$80,000	\$56,000	14,590 kWh	23 years	21,885 lbs/yr

**Calculated using the average state energy cost of \$0.097 per kWh.*

Atlanta, Georgia

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$1,775,000	699,425 kWh	14 years	1,049,140 lbs/yr
250 kW	\$1,750,000	\$725,000	349,713 kWh	7 years	524,570 lbs/yr
100 kW	\$750,000	\$262,500	129,885 kWh	<5 years	194,830 lbs/yr
50 kW	\$400,000	\$140,000	69,943 kWh	<5 years	104,910 lbs/yr
25 kW	\$200,000	\$70,000	34,491 kWh	<5 years	51,740 lbs/yr
10 kW	\$80,000	\$24,000	13,989 kWh	<5 years	20,980 lbs/yr

*Calculated using the average state energy cost of \$0.079 per kWh.

Baltimore, Maryland

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	638,599 kWh	26 years	957,900 lbs/yr
250 kW	\$1,750,000	\$1,225,000	319,300 kWh	28 years	478,950 lbs/yr
100 kW	\$750,000	\$525,000	127,720 kWh	30 years	191,580 lbs/yr
50 kW	\$400,000	\$280,000	63,860 kWh	32 years	95,790 lbs/yr
25 kW	\$200,000	\$140,000	31,930 kWh	32 years	47,895 lbs/yr
10 kW	\$80,000	\$48,500	12,772 kWh	24 years	19,160 lbs/yr

**Calculated using the average state energy cost of \$0.078 per kWh.*

Boston, Massachusetts

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	646,768 kWh	17 years	970,150 lbs/yr
250 kW	\$1,750,000	\$1,225,000	323,384 kWh	18 years	485,080 lbs/yr
100 kW	\$750,000	\$450,000	129,354 kWh	15 years	194,030 lbs/yr
50 kW	\$400,000	\$217,500	64,677 kWh	13 years	97,015 lbs/yr
25 kW	\$200,000	\$102,500	32,338 kWh	11 years	48,510 lbs/yr
10 kW	\$80,000	\$41,000	12,935 kWh	11 years	19,400 lbs/yr

**Calculated using the average state energy cost of* \$0.118 per kWh. Buffalo, New York

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,162,500	559,483 kWh	15 years	839,225 lbs/yr
250 kW	\$1,750,000	\$1,112,500	279,741 kWh	14 years	419,610 lbs/yr
100 kW	\$750,000	\$412,500	111,897 kWh	12 years	167,845 lbs/yr
50 kW	\$400,000	\$192,500	55,948 kWh	9 years	83,920 lbs/yr
25 kW	\$200,000	\$96,250	27,974 kWh	9 years	41,960 lbs/yr
10 kW	\$80,000	\$38,500	11,190 kWh	9 years	16,785 lbs/yr

*Calculated using the average state energy cost of \$0.145 per kWh.

Chicago, Illinois

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,225,000	611,661 kWh	24 years	917,490 lbs/yr
250 kW	\$1,750,000	\$1,175,000	305,831 kWh	25 years	458,750 lbs/yr
100 kW	\$750,000	\$475,000	122,332 kWh	24 years	183,500 lbs/yr
50 kW	\$400,000	\$230,000	61,166 kWh	21 years	91,750 lbs/yr
25 kW	\$200,000	\$90,000	30,583 kWh	12 years	45,875 lbs/yr
10 kW	\$80,000	\$32,000	12,233 kWh	8 years	18,350 lbs/yr

*Calculated using the average state energy cost of \$0.084 per kWh.

Charlotte, North Carolina

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$1,137,500	685,324 kWh	<5 years	1,027,990 lbs/yr
250 kW	\$1,750,000	\$612,500	342,662 kWh	<5 years	513,990 lbs/yr
100 kW	\$750,000	\$262,500	137,065 kWh	<5 years	205,600 lbs/yr
50 kW	\$400,000	\$140,000	68,532 kWh	<5 years	102,800 lbs/yr
25 kW	\$200,000	\$70,000	34,266 kWh	<5 years	51,400 lbs/yr
10 kW	\$80,000	\$28,000	13,706 kWh	<5 years	20,560 lbs/yr

**Calculated using the average state energy cost of \$0.085 per kWh.*

Cincinnati, Ohio

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,125,000	609,140 kWh	22 years	913,710 lbs/yr
250 kW	\$1,750,000	\$1,075,000	304,570 kWh	21 years	456,855 lbs/yr
100 kW	\$750,000	\$365,000	121,830 kWh	14 years	182,745 lbs/yr
50 kW	\$400,000	\$130,000	60,910 kWh	<5 years	91,365 lbs/yr
25 kW	\$200,000	\$40,000	30,460 kWh	<5 years	45,690 lbs/yr
10 kW	\$80,000	\$16,000	12,180 kWh	<5 years	18,270 lbs/yr

*Calculated using the average state energy cost of \$0.085 per kWh.

Cleveland, Ohio

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,125,000	569,332 kWh	23 years	854,000 lbs/yr
250 kW	\$1,750,000	\$1,075,000	284,666 kWh	22 years	427,000 lbs/yr
100 kW	\$750,000	\$365,000	113,866 kWh	14 years	170,800 lbs/yr
50 kW	\$400,000	\$130,000	56,933 kWh	<5 years	85,400 lbs/yr
25 kW	\$200,000	\$40,000	28,467 kWh	<5 years	42,700 lbs/yr
10 kW	\$80,000	\$16,000	11,387 kWh	<5 years	17,080 lbs/yr

*Calculated using the average state energy cost of \$0.085 per kWh.

Columbus, Ohio

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,125,000	584,935 kWh	23 years	877,400 lbs/yr
250 kW	\$1,750,000	\$1,075,000	292,467 kWh	22 years	438,700 lbs/yr
100 kW	\$750,000	\$365,000	116,987 kWh	14 years	175,480 lbs/yr
50 kW	\$400,000	\$130,000	58,493 kWh	<5 years	87,740 lbs/yr
25 kW	\$200,000	\$40,000	29,247 kWh	<5 years	43,870 lbs/yr
10 kW	\$80,000	\$16,000	11,699 kWh	<5 years	17,550 lbs/yr

**Calculated using the average state energy cost of \$0.085 per kWh.*

Dallas, Texas

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	729,620 kWh	18 years	1,094,430 lbs/yr
250 kW	\$1,750,000	\$1,225,000	364,810 kWh	20 years	547,215 lbs/yr
100 kW	\$750,000	\$525,000	145,920 kWh	21 years	218,880 lbs/yr
50 kW	\$400,000	\$280,000	72,960 kWh	23 years	109,440 lbs/yr
25 kW	\$200,000	\$140,000	36,480 kWh	23 years	54,720 lbs/yr
10 kW	\$80,000	\$56,000	14,590 kWh	23 years	21,885 lbs/yr

**Calculated using the average state energy cost of \$0.097 per kWh.*

Denver, Colorado

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives*	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,075,000	758,283 kWh	15 years	1,137,420 lbs/yr
250 kW	\$1,750,000	\$1,025,000	379,142 kWh	16 years	568,710 lbs/yr
100 kW	\$750,000	\$325,000	151,657 kWh	18 years	227,485 lbs/yr
50 kW	\$400,000	\$180,000	75,828 kWh	19 years	113,740 lbs/yr
25 kW	\$200,000	\$90,000	37,914 kWh	19 years	56,870 lbs/yr
10 kW	\$80,000	\$36,000	15,166 kWh	19 years	22,750 lbs/yr

*Includes Xcel Utility Rebate and calculated using the average state energy cost of \$0.084 per kWh.

Detroit, Michigan

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	596,108 kWh	26 years	894,160 lbs/yr
250 kW	\$1,750,000	\$1,225,000	298,054 kWh	28 years	447,080 lbs/yr
100 kW	\$750,000	\$525,000	119,222 kWh	30 years	178,830 lbs/yr
50 kW	\$400,000	\$280,000	59,611 kWh	32 years	89,420 lbs/yr
25 kW	\$200,000	\$140,000	29,805 kWh	32 years	44,710 lbs/yr
10 kW	\$80,000	\$56,000	11,922 kWh	32 years	17,880 lbs/yr

*Calculated using the average state energy cost of \$0.083 per kWh.

East Rutherford, New Jersey

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	615,377 kWh	19 years	923,065 lbs/yr
250 kW	\$1,750,000	\$1,225,000	307,688 kWh	20 years	461,530 lbs/yr
100 kW	\$750,000	\$525,000	123,075 kWh	22 years	184,610 lbs/yr
50 kW	\$400,000	\$235,000	61,538 kWh	17 years	92,310 lbs/yr
25 kW	\$200,000	\$117,500	30,769 kWh	17 years	46,150 lbs/yr
10 kW	\$80,000	\$47,000	12,308 kWh	17 years	18,460 lbs/yr

*Calculated using the average state energy cost of \$0.112 per kWh.

Green Bay, Wisconsin

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period	Emissions
500 kW	\$3,250,000	\$2,275,000	627,947 kWh	23 years	941,920 lbs/yr
250 kW	\$1,750,000	\$1,225,000	313,974 kWh	24 years	470,960 lbs/yr
100 kW	\$750,000	\$525,000	125,589 kWh	26 years	188,380 lbs/yr
50 kW	\$400,000	\$280,000	62,795 kWh	19 years	94,190 lbs/yr
25 kW	\$200,000	\$140,000	31,387 kWh	11 years	47,095 lbs/yr
10 kW	\$80,000	\$56,000	12,559 kWh	11 years	18,840 lbs/yr

*Calculated using the average state energy cost of \$0.091 per kWh.

Houston, Texas

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	634,499 kWh	21 years	951,750 lbs/yr
250 kW	\$1,750,000	\$1,225,000	317,250 kWh	22 years	475,875 lbs/yr
100 kW	\$750,000	\$525,000	126,900 kWh	24 years	190,350 lbs/yr
50 kW	\$400,000	\$280,000	63,450 kWh	26 years	95,175 lbs/yr
25 kW	\$200,000	\$140,000	31,725 kWh	26 years	47,590 lbs/yr
10 kW	\$80,000	\$56,000	12,690 kWh	26 years	19,035 lbs/yr

*Calculated using the average state energy cost of \$0.097 per kWh.

Indianapolis, Indiana

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	636,483 kWh	28 years	954,725 lbs/yr
250 kW	\$1,750,000	\$1,225,000	318,241 kWh	30 years	477,360 lbs/yr
100 kW	\$750,000	\$525,000	127,297 kWh	32 years	190,945 lbs/yr
50 kW	\$400,000	\$280,000	63,648 kWh	34 years	95,470 lbs/yr
25 kW	\$200,000	\$140,000	31,824 kWh	34 years	47,740 lbs/yr
10 kW	\$80,000	\$56,000	12,730 kWh	34 years	19,095 lbs/yr

*Calculated using the average state energy cost of \$0.073 per kWh.

Jacksonville, Florida

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,175,000	668,630	20 years	584,935 lbs/yr
250 kW	\$1,750,000	\$1,125,000	334,315	20 years	292,467 lbs/yr
100 kW	\$750,000	\$425,000	133,726	17 years	116,987 lbs/yr
50 kW	\$400,000	\$180,000	66,863	10 years	58,493 lbs/yr
25 kW	\$200,000	\$40,000	33,432	<5 years	29,247 lbs/yr
10 kW	\$80,000	\$16,000	13,373	<5 years	11,699 lbs/yr

*Calculated using the average state energy cost of \$0.090 per kWh.

Kansas City, Missouri

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	682,360 kWh	27 years	1,023,540 lbs/yr
250 kW	\$1,750,000	\$1,225,000	341,180 kWh	29 years	511,770 lbs/yr
100 kW	\$750,000	\$525,000	136,470 kWh	31 years	204,705 lbs/yr
50 kW	\$400,000	\$280,000	68,236 kWh	34 years	102,354 lbs/yr
25 kW	\$200,000	\$140,000	34,120 kWh	34 years	51,180 lbs/yr
10 kW	\$80,000	\$56,000	13,650 kWh	34 years	20,475 lbs/yr

**Calculated using the average state energy cost of \$0.070 per kWh.*

Los Angeles, California

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	764,003 kWh	5 years	1,146,000 lbs/yr
250 kW	\$1,750,000	\$1,225,000	382,002 kWh	6 years	573,000 lbs/yr
100 kW	\$750,000	\$525,000	152,801 kWh	7 years	229,200 lbs/yr
50 kW	\$400,000	\$280,000	76,400 kWh	8 years	114,600 lbs/yr
25 kW	\$200,000	\$140,000	38,200 kWh	8 years	57,300 lbs/yr
10 kW	\$80,000	\$56,000	15,280 kWh	8 years	22,920 lbs/yr

*Calculated using incentive rates current as of March 2010 for the SCE district: \$0.22 per kWh and using the state average energy cost of \$0.125 per kWh.

Memphis, Tennessee

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,200,000	695,770 kWh	26 years	1,043,655 lbs/yr
250 kW	\$1,750,000	\$1,150,000	347,880 kWh	26 years	521,820 lbs/yr
100 kW	\$750,000	\$450,000	139,150 kWh	23 years	208,725 lbs/yr
50 kW	\$400,000	\$205,000	68,580 kWh	17 years	102,870 lbs/yr
25 kW	\$200,000	\$65,000	34,790 kWh	<5 years	52,185 lbs/yr
10 kW	\$80,000	\$24,000	13,915 kWh	<5 years	20,870 lbs/yr

**Calculated using the average state energy cost of \$0.069 per kWh.*

Miami, Florida

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,175,000	696,548 kWh	19 years	1,044,820 lbs/yr
250 kW	\$1,750,000	\$1,125,000	348,274 kWh	19 years	522,410 lbs/yr
100 kW	\$750,000	\$425,000	139,310 kWh	15 years	208,965 lbs/yr
50 kW	\$400,000	\$180,000	68,655 kWh	9 years	102,980 lbs/yr
25 kW	\$200,000	\$40,000	34,827 kWh	<5 years	52,240 lbs/yr
10 kW	\$80,000	\$16,000	12,931 kWh	<5 years	19,400 lbs/yr

*Calculated using the average state energy cost of \$0.090 per kWh.

Milwaukee, Wisconsin

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	638,338 kWh	22 years	957,507 lbs/yr
250 kW	\$1,750,000	\$1,225,000	319,169 kWh	24 years	478,750 lbs/yr
100 kW	\$750,000	\$525,000	123,668 kWh	26 years	185,500 lbs/yr
50 kW	\$400,000	\$280,000	63,834 kWh	19 years	95,750 lbs/yr
25 kW	\$200,000	\$140,000	31,917 kWh	11 years	47,875 lbs/yr
10 kW	\$80,000	\$56,000	12,767 kWh	11 years	19,150 lbs/yr

**Calculated using the average state energy cost of \$0.091 per kWh.*

Minneapolis, Minnesota

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	668,494 kWh	24 years	1,002,740 lbs/yr
250 kW	\$1,750,000	\$1,225,000	334,247 kWh	26 years	501,370 lbs/yr
100 kW	\$750,000	\$525,000	133,699 kWh	28 years	200,550 lbs/yr
50 kW	\$400,000	\$280,000	66,849 kWh	30 years	100,270 lbs/yr
25 kW	\$200,000	\$140,000	33,425 kWh	30 years	50,140 lbs/yr
10 kW	\$80,000	\$56,000	13,370 kWh	30 years	20,055 lbs/yr

*Calculated using the average state energy cost of \$0.079 per kWh.

Nashville, Tennessee

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,200,000	664,402 kWh	27 years	996,600 lbs/yr
250 kW	\$1,750,000	\$1,150,000	332,201 kWh	27 years	498,300 lbs/yr
100 kW	\$750,000	\$450,000	132,880 kWh	25 years	199,320 lbs/yr
50 kW	\$400,000	\$205,000	66,440 kWh	19 years	99,660 lbs/yr
25 kW	\$200,000	\$65,000	33,220 kWh	<5 years	49,830 lbs/yr
10 kW	\$80,000	\$24,000	13,288 kWh	<5 years	19,932 lbs/yr

*Calculated using the average state energy cost of \$0.069 per kWh.

New Orleans, Louisiana

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	664,238 kWh	24 years	996,360 lbs/yr
250 kW	\$1,750,000	\$1,225,000	332,119 kWh	26 years	498,180 lbs/yr
100 kW	\$750,000	\$525,000	132,848 kWh	27 years	199,270 lbs/yr
50 kW	\$400,000	\$280,000	66,424 kWh	29 years	99,640 lbs/yr
25 kW	\$200,000	\$140,000	33,212 kWh	29 years	49,820 lbs/yr
10 kW	\$80,000	\$56,000	13,285 kWh	29 years	19,930 lbs/yr

*Calculated using the average state energy cost of \$0.081 per kWh.

New York City, New York

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,162,500	633,758 kWh	13 years	950,640 lbs/yr
250 kW	\$1,750,000	\$1,112,500	316,879 kWh	13 years	475.320 lbs/yr
100 kW	\$750,000	\$412,500	126,752 kWh	10 years	190,130 lbs/yr
50 kW	\$400,000	\$192,500	63,376 kWh	8 years	95,060 lbs/yr
25 kW	\$200,000	\$96,250	31,688 kWh	8 years	47,530 lbs/yr
10 kW	\$80,000	\$38,500	12,675 kWh	8 years	19,010 lbs/yr

**Calculated using the average state energy cost of \$0.145 per kWh.*

Oakland, California

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	751,608 kWh	8 years	1,127,410 lbs/yr
250 kW	\$1,750,000	\$1,225,000	375,804 kWh	9 years	563,700 lbs/yr
100 kW	\$750,000	\$525,000	150,322 kWh	10 years	225,480 lbs/yr
50 kW	\$400,000	\$280,000	75,161 kWh	11 years	112,740 lbs/yr
25 kW	\$200,000	\$140,000	37,580 kWh	11 years	56,370 lbs/yr
10 kW	\$80,000	\$56,000	15,032 kWh	11 years	22,550 lbs/yr

*Calculated using incentive rates current as of March 2010 for the PG&E district: \$0.15 per kWh and using the average state energy cost of \$0.125 per kWh.

Oklahoma City, Oklahoma

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	741,450 kWh	23 years	1,112,175 lbs/yr
250 kW	\$1,750,000	\$1,225,000	370,730 kWh	25 years	556,095 lbs/yr
100 kW	\$750,000	\$525,000	148,290 kWh	26 years	222,435 lbs/yr
50 kW	\$400,000	\$280,000	74,145 kWh	28 years	111,220 lbs/yr
25 kW	\$200,000	\$140,000	37,070 kWh	28 years	55,605 lbs/yr
10 kW	\$80,000	\$56,000	14,830 kWh	28 years	22,245 lbs/yr

*Calculated using the average state energy cost of \$0.077 per kWh.

Orlando, Florida

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,175,000	709,210 kWh	19 years	1,063,815 lbs/yr
250 kW	\$1,750,000	\$1,125,000	354,606 kWh	19 years	541,910 lbs/yr
100 kW	\$750,000	\$425,000	141,840 kWh	16 years	212,760 lbs/yr
50 kW	\$400,000	\$180,000	70,920 kWh	9 years	106,380 lbs/yr
25 kW	\$200,000	\$40,000	35,460 kWh	<5 years	53,190 lbs/yr
10 kW	\$80,000	\$16,000	14,180 kWh	<5 years	21,270 lbs/yr

*Calculated using the average state energy cost of \$0.090 per kWh.

Phoenix, Arizona

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,250,000	840,277 kWh	18 years	1,260,415 lbs/yr
250 kW	\$1,750,000	\$1,200,000	420,139 kWh	19 years	630,208 lbs/yr
100 kW	\$750,000	\$500,000	168,055 kWh	19 years	252,082 lbs/yr
50 kW	\$400,000	\$255,000	84,028 kWh	19 years	126,042 lbs/yr
25 kW	\$200,000	\$120,000	42,014 kWh	17 years	63,021 lbs/yr
10 kW	\$80,000	\$46,000	16,806 kWh	17 years	25,209 lbs/yr

**Calculated using the average state energy cost of* \$0.085 *per kWh.*

Philadelphia, Pennsylvania

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	627,316 kWh	22 years	940,975 lbs/yr
250 kW	\$1,750,000	\$1,225,000	313,658 kWh	23 years	470,490 lbs/yr
100 kW	\$750,000	\$525,000	125,463 kWh	25 years	188,195 lbs/yr
50 kW	\$400,000	\$280,000	62,732 kWh	27 years	94,100 lbs/yr
25 kW	\$200,000	\$140,000	31,366 kWh	27 years	47,050 lbs/yr
10 kW	\$80,000	\$56,000	12,546 kWh	27 years	18,820 lbs/yr

*Calculated using the average state energy cost of \$0.096 per kWh.

Pittsburg, Pennsylvania

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	571,590 kWh	24 years	857,385 lbs/yr
250 kW	\$1,750,000	\$1,225,000	285,800 kWh	26 years	428,700 lbs/yr
100 kW	\$750,000	\$525,000	114,320 kWh	27 years	171,480 lbs/yr
50 kW	\$400,000	\$280,000	57,160 kWh	29 years	85,740 lbs/yr
25 kW	\$200,000	\$140,000	28,580 kWh	29 years	42,870 lbs/yr
10 kW	\$80,000	\$56,000	11,430 kWh	29 years	17,145 lbs/yr

*Calculated using the average state energy cost of \$0.096 per kWh.

Portland, Oregon

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$650,000	529,569 kWh	<5 years	794,350 lbs/yr
250 kW	\$1,750,000	\$350,000	264,784 kWh	<5 years	397,180 lbs/yr
100 kW	\$750,000	\$150,000	105,914 kWh	<5 years	158,870 lbs/yr
50 kW	\$400,000	\$80,000	52,957 kWh	<5 years	79,453 lbs/yr
25 kW	\$200,000	\$40,000	26,478 kWh	<5 years	39,720 lbs/yr
10 kW	\$80,000	\$16,000	10,591 kWh	<5 years	15,890 lbs/yr

*Calculated using the average state energy cost of \$0.072 per kWh.

Raleigh, North Carolina

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$1,137,500	682,428 kWh	<5 years	1,023,640 lbs/yr
250 kW	\$1,750,000	\$612,500	341,214 kWh	<5 years	511,820 lbs/yr
100 kW	\$750,000	\$262,500	136,486 kWh	<5 years	204,730 lbs/yr
50 kW	\$400,000	\$140,000	68,243 kWh	<5 years	102,365 lbs/yr
25 kW	\$200,000	\$70,000	34,121 kWh	<5 years	51,180 lbs/yr
10 kW	\$80,000	\$28,000	13,649 kWh	<5 years	20,470 lbs/yr

**Calculated using the average state energy cost of* \$0.085 *per kWh.*

Sacramento, California

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	727,450 kWh	8 years	1,091,175 lbs/yr
250 kW	\$1,750,000	\$1,225,000	363,770 kWh	9 years	545,655 lbs/yr
100 kW	\$750,000	\$525,000	145,510 kWh	10 years	218,265 lbs/yr
50 kW	\$400,000	\$280,000	72,750 kWh	12 years	109,125 lbs/yr
25 kW	\$200,000	\$140,000	36,380 kWh	12 years	54,570 lbs/yr
10 kW	\$80,000	\$56,000	14,550 kWh	12 years	21,825 lbs/yr

*Calculated using current incentive rates as of March 2010 for the PG&E district: \$0.15 per kWh and using the average state energy cost of \$0.125 per kWh.

Salt Lake City, Utah

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,225,000	727,244 kWh	24 years	1,090,870 lbs/yr
250 kW	\$1,750,000	\$1,175,000	363,622 kWh	25 years	545,430 lbs/yr
100 kW	\$750,000	\$475,000	145,449 kWh	24 years	218,170 lbs/yr
50 kW	\$400,000	\$240,000	72,724 kWh	23 years	109,090 lbs/yr
25 kW	\$200,000	\$120,000	36,362 kWh	23 years	54,540 lbs/yr
10 kW	\$80,000	\$48,000	14,545 kWh	23 years	21,820 lbs/yr

*Calculated using the average state energy cost of \$0.072 per kWh.

San Antonio, Texas

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	717,440 kWh	19 years	1,076,160 lbs/yr
250 kW	\$1,750,000	\$1,225,000	358,720 kWh	20 years	538,080 lbs/yr
100 kW	\$750,000	\$525,000	143,490 kWh	22 years	215,235 lbs/yr
50 kW	\$400,000	\$280,000	71,740 kWh	23 years	107,610 lbs/yr
25 kW	\$200,000	\$140,000	35,870 kWh	23 years	53,805 lbs/yr
10 kW	\$80,000	\$56,000	14,350 kWh	23 years	21,525 lbs/yr

*Calculated using the average state energy cost of \$0.097 per kWh.

San Diego, California

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	778,940 kWh	7 years	1,168,410 lbs/yr
250 kW	\$1,750,000	\$1,225,000	389,470 kWh	8 years	584,205 lbs/yr
100 kW	\$750,000	\$525,000	155,790 kWh	9 years	233,685 lbs/yr
50 kW	\$400,000	\$280,000	77,890 kWh	10 years	116,835 lbs/yr
25 kW	\$200,000	\$140,000	38,950 kWh	10 years	58,425 lbs/yr
10 kW	\$80,000	\$56,000	15,580 kWh	10 years	23,370 lbs/yr

**Calculated using incentive rates current as of March 2010 for the SDG&E district:* \$0.15 per kWh and the average state energy cost of \$0.125 per kWh.

San Francisco, California

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,265,000	751,608 kWh	8 years	1,127,410 lbs/yr
250 kW	\$1,750,000	\$1,215,000	375,804 kWh	9 years	563,700 lbs/yr
100 kW	\$750,000	\$515,000	150,322 kWh	9 years	225,480 lbs/yr
50 kW	\$400,000	\$270,000	75,161 kWh	10 years	112,740 lbs/yr
25 kW	\$200,000	\$130,000	37,580 kWh	9 years	56,370 lbs/yr
10 kW	\$80,000	\$46,000	15,032 kWh	6 years	22,550 lbs/yr

**Calculated using incentive rates current as of March 2010 for the PG&E district:* \$0.15 *per kWh and the average state energy cost of* \$0.125 *per kWh.*

Seattle, Washington

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	504,574 kWh	39 years	756,860 lbs/yr
250 kW	\$1,750,000	\$1,225,000	252,287 kWh	40 years	378,430 lbs/yr
100 kW	\$750,000	\$525,000	100,915 kWh	39 years	151,370 lbs/yr
50 kW	\$400,000	\$280,000	50,557 kWh	34 years	75,835 lbs/yr
25 kW	\$200,000	\$140,000	25,229 kWh	19 years	37,840 lbs/yr
10 kW	\$80,000	\$56,000	10,091 kWh	<5 years	15,140 lbs/yr

**Calculated using the average state energy cost of* \$0.064 *per kWh.*

St Louis, Missouri

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,275,000	657,820 kWh	28 years	986,730 lbs/yr
250 kW	\$1,750,000	\$1,225,000	328,910 kWh	30 years	493,365 lbs/yr
100 kW	\$750,000	\$525,000	131,564 kWh	32 years	197,350 lbs/yr
50 kW	\$400,000	\$280,000	65,782 kWh	34 years	98,670 lbs/yr
25 kW	\$200,000	\$120,000	32,891 kWh	34 years	49,340 lbs/yr
10 kW	\$80,000	\$56,000	13,156 kWh	34 years	19,730 lbs/yr

**Calculated using the average state energy cost of* \$0.070 *per kWh.*

Tampa, Florida

Array	Flat Cost	With	Annual Energy	Pay Back	Avoided CO ₂
Rating Size		Incentives	Production	Period*	Emissions
500 kW	\$3,250,000	\$2,175,000	709,210 kWh	19 years	1,063,815 lbs/yr
250 kW	\$1,750,000	\$1,125,000	354,606 kWh	19 years	541,910 lbs/yr
100 kW	\$750,000	\$425,000	141,840 kWh	16 years	212,760 lbs/yr
50 kW	\$400,000	\$180,000	70,920 kWh	9 years	106,380 lbs/yr
25 kW	\$200,000	\$40,000	35,460 kWh	<5 years	53,190 lbs/yr
10 kW	\$80,000	\$16,000	14,180 kWh	<5 years	21,270 lbs/yr

**Calculated using the average state energy cost of* \$0.090 *per kWh.*

INTERNET RESOURCES

Natural Resources Defense Council	http://nrdc.org/
NRDC Greening Advisors For Major League Baseball For the National Basketball Association	<u>http://www.greensports.org/mlb/</u> <u>http://www.greensports.org/nba/</u>
Bonneville Environmental Foundation	http://www.b-e-f.org/
Solar Research Resources	
National Renewable Energy Laboratory (NREL)	http://www.nrel.gov/
Lawrence Berkeley National Laboratory	http://www.lbl.gov/
<u>Online Tools</u>	
PVWatts (Solar calculator developed by the NREL)	http://www.pvwatts.org/
Incentives and Financing Information	
Database of State Incentives for Renewables and Efficiency	http://www.dsireusa.org/
Property Assessed Clean Energy Bonds (PACE)	http://pacenow.org/
Solar Organizations	
American Solar Energy Society	http://www.ases.org/
Solar Energy Industries Association	http://www.seia.org/
Solar Tech	http://www.solartech.org/
Other Resources	
US Department of Energy: Energy Efficiency and Renewable Energy	http://www.eere.energy.gov/
Interstate Renewable Energy Council	http://irecusa.org/
U.S. Green Building Council	http://www.usgbc.org/